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ABSTRACT 

 

 Transcranial magnetic stimulation (TMS) is an emerging technique to stimulate 

neural tissue non-invasively by inducing electric field in the brain with pulsed high-

intensity magnetic field. The advantages of stimulating neural tissue in this way have 

resulted in the technique being rapidly adopted for research and clinical purposes. 

Advances in the depth and localization of stimulation that TMS can achieve will allow 

new applications to be established that could replace surgical alternatives. 

To evaluate the performance of coils used for TMS it is necessary to understand 

how electric field is induced in neural tissue. To model this phenomenon, numerical 

methods and anatomically realistic human head models have been employed to 

accurately determine where neural stimulation will occur. The results of this analysis 

reveal the simplified homogeneous head models used in earlier studies are unable to 

correctly predict the distribution of induced electric field at depth in the brain.  

This method has subsequently been applied to develop novel coil designs to 

facilitate stimulation of deep-lying brain regions. Additionally, the mechanical stress 

experienced by TMS coils has been investigated to support further development of 

combined neuromodulation and neuroimaging systems. 
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CHAPTER I 

INTRODUCTION 

1.1 Transcranial magnetic stimulation 

 

Transcranial magnetic stimulation (TMS) is a neuromodulation technique with the 

distinction of being able to activate neurons in the brain non-invasively. This ability has 

led to TMS being widely adopted for research in fields including clinical 

neurophysiology, cognitive neuroscience and psychiatry. In recent years, TMS has 

become an established non-pharmacologic therapy for drug-resistant major depressive 

disorder (MDD). Further applications of the technique are likely to present themselves if 

current engineering limitations can be overcome. Three principle limitations are 

addressed in this thesis; theoretical determination of the locus of stimulation in the brain, 

the ability to stimulate neural tissue at depth, and physical constraints encountered when 

combining TMS with neuroimaging techniques such as magnetic resonance imaging 

(MRI). 

 

1.1.1 Development of transcranial magnetic stimulation 

The concept of electromagnetic induction was developed in 1831 by Faraday. 

Faraday demonstrated that a time-varying magnetic field could cause electric current to 

flow in nearby conductive materials.  

While attempts to stimulate the brain using time-varying magnetic fields were 

made as early as 1896 by d'Arsonval [1], the phenomenon has only been used in recent 

decades as a therapeutic modality in psychiatry, referred to as repetitive transcranial 
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magnetic stimulation (rTMS), which was approved for the treatment of MDD by the 

United States Food and Drug Administration (FDA) in 2008. 

Electromagnetic induction is the major principle in TMS, due to the moving 

electric charge in a coil generates a magnetic field surrounding it. Alternating currents 

bring about fluctuating magnetic fields that cause an electric field and hence cause 

electric current to flow in nearby conductors, which in the case of TMS is weakly 

conducting brain tissue. This enables electrical stimulation of neurons within the brain in 

a non-invasive fashion. The most commonly used form of expression for this concept is 

the Maxwell-Faraday equation, shown in differential form in (1.1), which states that a 

circulating electric field is produced by a magnetic field that changes with time. This is 

also commonly referred to as Faraday’s Law.  

 
 

!
∇×
!
E = − ∂

!
B
∂t

  (1.1)   

The connection between electricity and neural tissue was established prior to the 

discovery of electromagnetic induction, in the work of Galvani (1737-1789). Galvini 

discovered that frogs’ legs would move when touched by two different conductors and 

concluded that muscles and electricity were somehow related. The earliest attempts to 

stimulate the human cortex with magnetic field can be traced to the work of d’Arsonval, 

who reported ‘phosphenes’ (the experience of ‘seeing lights’ due to stimulation of the 

retina) in 1896, by application of an alternating magnetic field generated by a coil with a 

voltage of 110 V and a current of 30 A at a frequency of 42 Hz. Thompson, unaware of 

work by d’Arsonval, performed a similar experiment later, in 1910, and also reported 

phosphenes he termed ‘magnetophosphenes’ by using a coil with 32 turns, 9 inches in 

diameter and 8 inches in length [2]. Thompson’s coil was driven with a current of 180 A 
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at a frequency of 50 Hz, creating a reported magnetic field of 1400 Oe at center of the 

coil (approximately 1.11 × 105 A/m in SI units). It was later discovered by Barlow [3] 

that these phosphenes were arising from stimulation of the retina and not from 

stimulation of visual pathways in the brain as was previously thought. With the 

development of more powerful electronic components, pulsed magnetic field was used to 

activate muscles in small animals and humans in 1965 by Bickford and Fremming [4]. 

Non-invasive stimulation of the human motor cortex was finally achieved by Barker et al. 

in 1985 [5] whereupon adoption of the technique for various applications was initiated. 

Further overview of the historical development of TMS is provided by Geddes [6], 

George and Belmaker [7] and Walsh and Pascual-Leone [8]. 

 

1.1.2 Technical details and device design 

TMS stimulators supply pulsed electric current to a coil to produce the time-

varying magnetic field necessary for stimulation of neural tissue. A large capacitor is 

discharged by a thyristor switch, designed to reduce losses and be able to carry currents 

of thousands of amps. The characteristics of the discharged current are determined by the 

resonant frequency of the stimulator circuitry. For TMS, the primary consideration is the 

rate of change of current and subsequent magnetic field with respect to time. There are 

two types of TMS stimulator and they are distinguished by the characteristics of the 

waveform they produce: monophasic and biphasic. Monophasic TMS stimulators as 

depicted in Figure 1.1 are simpler in design and unable to generate the repetitive pulse 

sequences required for therapeutic use through rTMS. A typical waveform produced by a 

monophasic stimulator is shown in Figure 1.2.  
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Figure 1.1. Simplified circuit diagram of a monophasic TMS pulse generator [9].  

 

Figure 1.2. Magnetic flux density and induced electric field over a typical monophasic TMS pulse cycle. 

The electric current in the coil will correspond with the waveform of the magnetic flux density. 

Biphasic TMS stimulators as depicted in Figure 1.3 allow short inter-pulse 

periods needed for rTMS. A typical waveform produced by a biphasic stimulator is 

shown in Figure 1.4. This type of stimulator has become more widely utilized due to its 

rTMS ability, offering pulse repetition rates of 100 Hz [10]. Figure 1.4 shows the 

relationship between the current (and magnetic flux density) intensity and the electric 

field induced in the conducting tissue. 
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Figure 1.3. Simplified circuit diagram of a biphasic TMS pulse generator [9]. 

 

Figure 1.4. The magnetic flux density and induced electric field over a typical biphasic TMS pulse cycle. 

The electric current in the coil will correspond with the waveform of the magnetic flux density. 

Coils first used for TMS had flat circular geometry as shown in Figure 1.5 (a). 

These coils are constructed from approximately a dozen turns of thick copper wire. A few 

years following the inception of TMS, Ueno et al. [11] proposed a new coil 

configuration, the figure-8 coil, with the ability to more easily target brain regions. An 

example of a figure-8 coil is shown in Figure 1.5 (b).      



www.manaraa.com

 

	  

6 

 

Figure 1.5. (a) Circular Magstim HP90 (R) and (b) figure-8 Magstim D70 (R) remote control TMS coils. 

 

The magnetic and electric field produced by these two types of coil are shown in 

Figure 1.6. The fields have been calculated in a plane 20 mm from the surface of the 

coils, based on simple models of the circular Magstim HP90 (R) (P/N 3192-00) and 

figure-8 Magstim D70 (R) (P/N 3190-00) 2nd generation remote control coils, having 

inductances of 23.47 and 15.50 µH and maximum reported field strengths of 2.0 and 2.2 

T, respectively. The calculations were performed with a homogeneous conducting 

medium with electrical conductivity 0.33 S/m to calculate the induced electric field. 

Figure 1.6 (c) shows the large ring-shape of maximum intensity of induced electric field 

produced by the circular coil. Figure 1.6 (d) shows the central peak of maximum induced 

electric field intensity produced by the figure-8 coil demonstrating its advantage over the 

circular coil in targeting brain regions selectively. 
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Figure 1.6. Calculated magnetic field in a plane 20 mm from (a) modeled circular TMS coil and (b) 

modeled figure-8 TMS coil, and electric field induced in a homogeneous conducting medium in a plane 20 

mm from (c) modeled circular TMS coil and (d) modeled figure-8 TMS coil. 

 

1.1.3 Applications and protocols 

TMS offers a degree of localization such that a physiological or behavioral effect 

can be created by stimulating the relevant part of the cortex. For example, if the 

corresponding part of the primary motor cortex is targeted, the subject’s thumb will 

twitch. In a similar fashion, if the Broca’s area is targeted speech production will be 

affected. This allows the technique to be used to map brain function and study cortical 

connectivity. Figure 1.7 depicts the lobes of the brain and other prominent features. 
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Figure 1.7. Principle features and lobes of the brain, modified from Gray’s Anatomy Fig. 728 [12]. 

 

Since the inception of the technique, TMS has been used for a variety of studies. 

Early clinical investigations demonstrated increased latencies between the motor cortex 

and target muscles in patients with multiple sclerosis and motor neuron disease [13]. To 

date the main therapeutic use of TMS is in the treatment of MDD. MDD is one of the 

most prominent mental disorders in the United States, affecting 6.7% of the adult 

population. On average the onset of MDD occurs at 32 years although 3.3% of 13 to 18 

year olds also experience MDD [14]. 

Establishing protocols or pulse sequences for TMS treatment requires that 

frequency, intensity, and duration of stimulation be determined. Stimulation frequency is 

typically chosen based upon the desired effect. An increase or decrease in cortical 

excitability can be caused, with an increase usually brought about by high frequency 

pulse trains. Conversely, low frequency pulse trains will decrease excitability in the 

stimulated region. The approved treatment for MDD consists of pulse trains lasting four 

seconds at 10 Hz, delivered to the left dorsolateral prefrontal cortex (DLPFC). This 
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causes an increase in cortical excitability in this area. Some studies in the treatment of 

Tourette’s disorder have used a low frequency pulse train of 1 Hz over the supplementary 

motor area (SMA), with the anticipation that cortical excitability will be decreased. 

Intensity of stimulation is primarily established by the baseline cortical 

excitability, which can be determined by the minimum intensity required to cause a motor 

evoked potential (MEP). In clinical practice, this can be determined by observation of 

muscle movement and is known as the resting motor threshold (RMT). Stimulation 

intensity in TMS protocols can then be expressed as a percentage of the patient’s RMT, 

for example, the approved treatment for MDD is typically performed at an intensity of 

120% of the patient’s RMT. 

The duration of a TMS pulse train also has an effect upon the duration of the 

subsequent effects. A 15-minute train of rTMS in the motor cortex, at approximately 1 

Hz can reduce cortical excitability for the subsequent 15 minutes, while single pulse TMS 

has been shown to only change cortical excitability for approximately 200 ms. 

Many previous studies of cortical excitability following pulse sequences vary in 

utilized frequency, intensity and duration and are therefore at times seemingly 

inconsistent as a result. Practically it is useful to work with the paradigm that cortical 

excitability can be increased with high frequency pulse trains, while low frequency will 

decrease it. Longer durations of stimulus will generally increase the duration of 

subsequent effects.  

Theta burst stimulation (TBS) protocols utilize high frequency pulse train bursts 

(up to 100 Hz) at 5 Hz intervals, consistent with theta rhythm as measured by 

electroencephalography (EEG). Two main categories of TBS protocols have been 
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established, intermittent (iTBS) and continuous (cTBS), with excitatory and inhibitory 

effects, respectively. For 50 Hz bursts of three pulses, repeated every 200 ms, iTBS is 

defined as 10 bursts of stimulation repeated every ten seconds for a total of 191.84 s, or a 

total of 600 pulses. cTBS is defined as 20 or 40 s of continuous stimulation for a total of 

300 or 600 pulses. TBS protocols are still in the investigational stage, but indicate that 

similar effects to rTMS may be possible with significantly shorter treatment times, with 

similar or sometimes even greater duration of excitatory and inhibitory effects. 

 

1.1.4 Safety 

When dealing with a medical device the safety of the procedure must be 

thoroughly investigated. The majority of TMS patients do not suffer adverse effects from 

single-pulse TMS or rTMS and no fatal events have been reported. However, a variety of 

safety concerns can potentially arise. To avoid adverse effects a list of guidelines for 

safely conducting TMS experiments was established by Pascual-Leone et al. in 1993 

[15]. More recently, in 2008, a consensus conference was held to establish safety 

guidelines for TMS in research and clinical practice. The outcome of the conference are 

the guidelines by Rossi et al. [16] which take into account more recent findings and 

recommendations. 

One of the main safety concerns with TMS is the possibility of inducing a seizure. 

Although the occurrence of seizure is rare, high-frequency rTMS is believed to lower the 

seizure threshold in susceptible persons [17]. As a result the guidelines describe a variety 

of conditions that should exclude certain individuals from participating in TMS studies, 

including individuals with epilepsy, multiple sclerosis or subjects using tricyclic 
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antidepressants or neuroleptic agents. A more common problem encountered during TMS 

is the loud clicking noise that is created by the TMS coil. This noise is sufficiently loud to 

potentially damage a subject’s hearing but is easily avoided through the use of earplugs. 

Headaches can also arise as a result of recurring stimulation of peripheral nerves 

in the face and scalp and are experienced in 5 to 25% of patients. Burns can potentially 

occur during TMS if metal objects are in contact with the skin, as they will be heated by 

the pulsed magnetic field. Mechanical forces can also be exerted on implants in proximity 

to a stimulation coil and such devices should preclude subjects from the procedure. 

 

1.2 Other methods of brain stimulation 

 

Transcranial magnetic stimulation is one of a number of neuromodulation 

methods. The following overview of the alternative techniques identifies the relative 

strengths and weaknesses of TMS. 

 

1.2.1 Transcranial direct current stimulation 

The technique whereby a weak constant current is caused to flow through the 

cortex by electrodes placed on the scalp is referred to as transcranial direct current 

stimulation (tDCS). Typically sub-threshold stimulation increases neural activity near the 

anode due to membrane depolarization while this spontaneous activity is reduced with a 

reversed polarity due to hyperpolarization.  
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1.2.2 Deep brain stimulation 

Deep brain stimulation (DBS) describes the method of stimulating deep-lying 

brain regions with surgically inserted electrodes. DBS was approved by the FDA for 

treatment of Parkinson’s disease and essential tremor in 1997. The benefits of this 

technique are the highly localized targeting capabilities that have yielded significant 

results in the treatment of the motor symptoms of Parkinson’s disease (PD), essential 

tremor and dystonia. Typically, a pair of electrodes are inserted into the brain and are 

controlled by a generator implanted in the chest, in similar fashion to a cardiac 

pacemaker. Despite the invasive surgery required, there are currently over 100,000 DBS 

devices in use worldwide [18]. Use of DBS as a treatment for MDD is still under 

investigation although an early study of DBS for treatment-resistant MDD resulted in 

four of six subjects demonstrating marked improvement following the procedure [19].  

 

1.2.3 Vagus nerve stimulation 

The vagus nerve originates in the medulla of the central nervous system (CNS) 

and passes through the neck, chest and abdomen. Electrical stimulation of the vagus 

nerve in the neck has been proposed as a treatment for epilepsy, MDD, anxiety and 

migraine [20]. Vagus nerve stimulation (VNS) was approved by the FDA as a therapy for 

epilepsy in 1997. The technique was later approved for treatment-resistant MDD in 2005, 

for subjects who have had the illness for more than two years and for whom other 

treatments have proven ineffective. 
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1.2.4 Electroconvulsive therapy 

In the decades since electroconvulsive therapy (ECT) was first developed the 

procedure has improved into a safe and effective treatment for MDD and other conditions 

such as bipolar disorder and schizophrenia. One of the foremost drawbacks of the 

treatment is the likelihood of amnestic effects [21], although it is believed this can be 

reduced by administering ECT unilaterally as opposed to bilaterally. As with most 

neuromodulation techniques, ECT is usually only considered for therapeutic use if a 

subject’s symptoms have not improved with medication or psychotherapy. The treatment 

requires the subject to be sedated with general anesthesia and given muscle relaxant 

medication. Electrodes are used to pass current through the brain, causing a seizure 

typically lasting less than a minute.  

A similar treatment using pulsed magnetic field instead of electrodes has more 

recently been proposed. Magnetic seizure therapy (MST) uses higher stimulation rates 

than TMS and is intended to induce seizure in the patient to obtain the same therapeutic 

benefits as ECT. The efficacy of this procedure is still unknown. 

 

1.3 Effect upon neural tissue 

 

Neural cells work to perform the numerous functions of the nervous system 

including cognition, emotion, movement, sensory perception, and regulation of 

circulation and respiration. There are two main categories of neural cells, neurons and 

glia. Structural and functional types of both categories exist but in general it can be stated 

that the function of neurons is to process and transmit information while glial cells 
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support the function of neurons. There are approximately 100 billion neurons in the adult 

human brain forming trillions of connections throughout the nervous system. The central 

nervous system (CNS) comprises of the brain and spinal cord while the peripheral 

nervous system (PNS) consists mostly of nerves, stemming from the central nervous 

system and going to the extremities.  

 

1.3.1 Action potentials, chronaxie and rheobase 

The resting membrane potential of a neuron is approximately -70 mV due to the 

relative intracellular and extracellular concentrations of potassium, sodium and chloride 

ions. If the membrane potential changes to approximately -40 mV the sodium channels 

open and a short flow of ionic current will occur, briefly shifting the membrane potential 

to +20 mV before returning to the resting potential. This process is referred to as an 

action potential. During TMS, action potentials are caused by the transient magnetic field 

inducing electric field in the neural tissue, which can then propagate along the nerve. 

When considering the effect of TMS upon a neuron, two primary factors include 

rheobase and chronaxie. Rheobase is the lowest intensity of current that can generate an 

action potential in a neuron. Chronaxie is the minimum time for a current to double the 

strength of the rheobase of a neuron. When a magnetic field pulses next to neural tissue, 

an electric field can potentially be generated with the necessary characteristics to cause 

neurons to depolarize, resulting in action potentials. As stated, when the motor cortex is 

stimulated in this way, the result is an MEP, leading to motor activity. Stimulation of 

other brain regions may not be consciously experienced by the subject but have resulted 

in measurable changes, such as in a subject’s performance of a cognitive task.  
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Practical application of TMS is mostly focused on rTMS, where pulses are 

delivered in trains at certain frequencies, having been shown to bring about lasting 

effects. Typically, low frequency stimulation (~1 Hz) causes reduced cortical excitability, 

while high frequency stimulation (> ~5 Hz) increases cortical excitability. In both cases, 

a lasting effect can be observed following treatment. Although the mechanism of 

stimulation is not entirely understood, the effect can be described by the phenomena of 

long-term potentiation (LTP) and long-term depression (LTD) [22]. 

 

1.3.2 Long-term potentiation and depression 

LTP is a process by which synaptic communication between neurons becomes 

more efficient by the neurons firing in sequence. The process was first defined by Lømo 

in 1966 and describes how a single electric stimulus delivered to pre-synaptic fibers can 

result in excitatory post-synaptic potentials (EPSPs) [23]. LTD describes the opposite 

process to LTP and is thought to result primarily from a reduction in post-synaptic 

receptor density, with L-glutamate affecting multiple receptors to selectively reduce 

receptor strength. It is believed that the modulation of these phenomena is the method by 

which rTMS causes lasting effects and clinical utility. 
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CHAPTER II 

BACKGROUND 

2.1 Coil design for transcranial magnetic stimulation 

 

Much of the technological development of TMS has focused on the design of the 

coil used to stimulate the brain. Changing the geometry and construction of the coil 

affects the characteristics of the magnetic field it produces, which in turn changes the 

distribution of electric field that is induced in the brain. Through modification of the coil 

design it has previously been demonstrated, to some extent, that it is possible to change 

the localization of stimulation and the depth at which a stimulating magnetic field can 

penetrate. 

 

2.1.1 Initial coil designs 

Since the time that non-invasive stimulation of the human motor cortex was first 

demonstrated by Barker et al. in 1985 [1], TMS stimulator coils have primarily 

comprised of flat circular geometries. The greatest electric field induced by these coils is 

directly below the coil windings. This means that circular coils do not produce a single 

location of maximum field. However, circular coils are able to stimulate both 

hemispheres of the brain simultaneously to some degree, when the coil is placed at the 

cranial vertex. The direction of induced current can affect the extent to which neural 

stimulation can be achieved in the motor cortex, currents flowing from posterior to 

anterior are preferential. Therefore, in this scenario one hemisphere will be preferentially 

stimulated.  
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Flat circular coils are still utilized and commercially produced [2] but have largely 

been succeeded by more complex designs for clinical and therapeutic use. Ueno et al. [3] 

proposed the figure-8 coil in 1988 as a method to achieve localized stimulation by 

combining two coil windings side by side, with currents flowing in the same direction at 

the point where the two coils meet. The resulting electric fields constructively interfere, 

allowing focused stimulation. Although the figure-8 coil allows the localization of 

stimulation to be greatly increased, the attenuation of electric field within a homogeneous 

volume conductor occurs more rapidly for a figure-8 coil than a circular coil [4], [5] 

reducing the ability of a figure-8 coil to stimulate deep-lying brain regions. 

 

2.1.2 Evolution of coil designs 

The double-cone coil is a variant of the figure-8 coil where rather than both coil 

windings being flat relative to each other, each side of the coil are rotated form an angle. 

This allows the coil to create higher intensities of electric field at depth than is possible 

with a standard figure-8 coil. Some investigations have shown the double-cone coil to be 

capable of stimulating the leg motor area, located 30 to 40 mm below the surface of the 

scalp [6], [7]. Roth et al. [8] have estimated the stimulation threshold of neurons to be 20 

to 60 V/m, requiring only 30 to 50% of the maximum output possible with a common 

commercial TMS stimulator, when using the double-cone coil. It has been indicated that 

attempting stimulation of deeper-lying regions can be painful for the subject, due to the 

high-intensity field being induced in higher cortical areas and the potential stimulation of 

facial muscles. Another limitation of the geometry of the double-cone coil is that it 

produces larger field intensities at the sides of the head. The field in these regions can 
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approach 50% of the maximum field produced below the center of the coil when 

stimulator output is 150% [9]. In this scenario, the field in these regions is theoretically 

capable of stimulating neural tissue. As a result, care must be taken when using the 

double-cone coil to ensure that only brain regions below the center of the coil are 

affected.  

To decrease the field intensity away from the center of figure-8 coils, double-

butterfly coils and later, eccentrically wound coils have been developed [10], [11]. Other 

methods to manipulate the field produced by figure-8 coils include the use of a 

conductive shielding plate [12] and ‘active’ shielding by secondary coil causing 

counteracting magnetic fields [13]. Layering multiple figure-8 coils has also been 

proposed [14].  

In order to achieve an effective ‘sham’ coil for use in clinical studies, coils with 

the capability of engaging a reverse-current mode have been developed [15], which 

provide the sensation of stimulation without generating a field with enough intensity for 

neural stimulation. Most TMS coils rely solely upon the field produced by the current 

carrying conductor in the coils to produce the stimulating field. However, coils that make 

use of ferromagnetic iron cores have been also been proposed in coils of different designs 

and sizes [16]–[19] and have been utilized in widely-used commercial systems [20]. 

 

2.1.3 Coils for stimulation of deep-lying brain regions 

The ability to apply TMS to deep brain regions has proved difficult due to the 

rapid attenuation of electric field intensity as a function of distance from the stimulator 

coil [4], [5], [21]–[23]. If commonly used coil designs are utilized to stimulate deep brain 
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regions, the high intensity of field that is required also stimulates cortical regions and 

possibly facial nerves to an extent that can cause pain [8]. However, being able to 

stimulate deep brain regions non-invasively could allow the development of therapeutic 

applications for various brain disorders [24]. TMS of deep brain regions could also create 

a non-invasive treatment for tremor arising from Parkinson’s disease and dystonia in 

place of DBS.  

When developing TMS coils for the stimulation of deep brain regions various 

factors must be considered. The stimulation threshold of neurons must be fully 

understood to guarantee new coil designs will be capable of stimulating desired regions. 

Conflicting values of stimulation threshold can be found in the literature with values of 

required intensity ranging from 20 to 100 V/m [8], [25]. Variations in this value are likely 

due to the alignment of the neurons and the overlying gyral folding pattern. Limitations 

of the available TMS stimulators must also be considered, such as new coils conforming 

to existing inductance ranges, typically 15 to 25 µH. 

Roth et al. have also proposed a coil design to improve the depth of stimulation, 

termed the Hesed Coil (H-Coil), identifying that existing TMS coils can only stimulate 

cortical brain regions [8]. The field produced by several of these coil designs has been 

calculated using the method proposed by Eaton [21], assuming a current discharge of 10 

kA in 100 µs. Roth et al. identified the effect of coil position on induced electric field, 

revealing that coil components that are perpendicular to the surface of the brain create an 

accumulation of surface charge that negatively affects, or even cancels, the perpendicular 

component of the induced electric field. The H-Coil attempts to minimize the presence of 

coil components that are not tangential to the tissue surface. Zangen et al. [26] report on a 
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modified H-Coil for stimulation of the abductor pollicis brevis (APB) area of the motor 

cortex to test the H-coil. The RMT was measured in patients as the H-Coil was 

increasingly moved away from the scalp. The intensity required for stimulation of the 

APB at several distances from the scalp using the H-Coil and a figure-8 coil were 

compared. As the distance from the scalp increased, the stimulator output required to 

stimulate the APB was shown to be lower for the H-Coil than for the figure-8 coil. When 

the maximum stimulator output was used, the figure-8 coil could stimulate the APB at a 

distance of 20 mm from the scalp while the H-Coil could stimulate the APB at a distance 

of 55 mm. However, a thorough comparison of the H-Coil and a figure-8 coil conducted 

by Fadini et al. [27], indicated that no significant advantage of the H-coil was found with 

regard to depth of stimulation. 

 

2.2 Electromagnetic modeling 

 

Electromagnetic modeling techniques can be used to calculate the magnetic and 

electric field produced by coils used for TMS. Since Barker’s demonstration of TMS in 

1985 [1], many attempts to improve the performance of TMS have been made. Much of 

this work relies on the ability to accurately predict the nature of the field induced inside 

the human head by an external electromagnetic field.  The emergence of TMS was one of 

a number of techniques that have factored in the development of human head models for 

electromagnetic modeling. Techniques such as electroencephalography (EEG) and 

magnetoencephalography (MEG) have also given rise to a desire to accurately 

characterize magnetic field patterns in the brain. 
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2.2.1 Human head modeling 

Efforts to develop realistic finite element head models were made by Thevenet et 

al. in 1992 [28]. These studies looked to assess the relationship between potentials in the 

human scalp and neural current sources in the brain. A four-layer concentric sphere 

model of the head was used with radii for brain, cerebrospinal fluid (CSF), skull and 

scalp of 0.84, 0.87, 0.92, and 1, respectively. A three-dimensional mesh was generated 

with 12479 nodes and 69784 tetrahedrons with local mesh refinement in a truncated cone. 

The usefulness of such concentric sphere models for electromagnetic applications was 

assessed by Roth et al. [29] by creating realistically shaped scalp, skull and brain models 

independently to calculate the electric potential produced by a dipole located in the 

temporal and frontal lobes of the brain. These realistic head model components could 

then be compared to a concentric sphere model as used by Thevenet et al. The purpose 

for this head modeling was the convenience of representing EEG activity sources as 

dipoles within the brain.  The temporal and frontal lobes were specifically chosen due to 

the association of epileptic spikes in these particular regions. The calculated potentials 

were then used in an inverse calculation for the spherical model to predict the dipole 

position, orientation and strength. The geometry of the scalp, skull and brain were created 

with structural images obtained from a 1.5 T MRI scanner and coronal slices with 2 mm 

separation. Limitations of the approach used by Roth et al. were: firstly digitization of the 

data being performed visually rather than automatically segmenting the head regions, and 

secondly the realistic model approximated the brain surface to be equivalent to that of the 

inner surface of the skull. Due to computational limitations at the time of publication, 
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only certain subsets of the digitized model were used for numerical calculations resulting 

in an average triangle area of 73, 56 and 40 mm2, respectively. On average, the dipole 

positions differed by 19.7 mm, with some results indicating a 40 mm difference, a clear 

demonstration that the concentric sphere model can produce large errors in the 

determination of the source of a dipole or the potentials generated by it. 

Yuan et al. [30] developed a brain model for the same EEG application as 

Thevenet et al. [28] and Roth et al. [29], but with the desire for increased resolution in 

the head model. This new study also had the significant advantage of being able to 

calculate potentials in the brain incorporating anisotropic elements in the model. The 

method required special techniques to form a symmetrical stiffness matrix for use in the 

finite element calculation. A realistic head model composed of 73,296 elements was 

developed using a similar method to Roth et al., as previously described. This study 

implemented a two-layer model comprising the skull and CSF region inside. The 

conductivity of the skull was specified as 0.0042 S/m for the normal direction relative to 

the surface and 0.042 S/m for the tangential direction. The conductivity of the CSF region 

was specified as 0.5 S/m in all directions (isotropic). The increased resolution of the mesh 

and the incorporation of anisotropic conductors allowed results to be produced with 

greater accuracy, although limiting the model to two regions was a severe limitation with 

significant detrimental effect on the calculation result. 

Yao et al. [31] also developed an improved realistic head model for determining 

the active sites of the brain recorded by EEG apparatus by means of modeling equivalent 

sources in the human head with the finite element method. The resulting model contained 

2,729 nodes and 5,446 triangular elements representing the scalp, skull and brain. 
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2.2.2 Human head modeling for transcranial magnetic stimulation 

Wagner et al. [32] describe the use of three-dimensional head modeling 

specifically for the purpose of TMS. The model was used to determine the induced 

current density in realistic human head models exposed to transient magnetic field 

generated by external sources, such as TMS coils. The dielectric constants used in the 

simulations were varied to assess the effect upon the calculated electric current density. 

Current density was also calculated throughout the various tissue layers to determine if 

the tissue boundaries have a significant effect on the distribution of induced currents. The 

study showed that the magnitude of current density correlated to the electrical 

conductivity of the tissues unless the permittivity was significantly raised. Under these 

circumstances, displacement currents can arise making the permittivity of the tissue a 

more dominant factor in the calculation of current density. Wagner et al. [32] identified 

that many previous studies conclude that neurons which lie parallel to the cortical tissue 

interface are preferentially stimulated and that fields normal to the cortical surface are 

minimized in the human head. These conclusions were based upon studies involving 

simplified head models such as spherical isotropic conductors. Previous studies have also 

asserted that tissue boundary layers that surround the cortex have little influence on the 

field that stimulates the cortex. Wagner et al. dispute this assumption and state that 

removing tissues from a head model will result in inaccurate results, citing that the CSF 

has a conductivity approximately 5 times larger than the surrounding tissues.  

The study by Wagner et al. focused on four primary areas. Firstly, investigation of 

how tissue boundaries can affect the induced current densities. Secondly, analysis of 
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conclusions drawn from earlier studies that made use of symmetric models. Thirdly, 

investigation of the effect of tissue geometry on resulting current distributions and lastly, 

to develop a head model which accounts for dispersive properties of tissues in a human 

head and how these can affect induced current. Wagner et al. [32] developed a new head 

model based upon MRI data of a 38-year-old male with a healthy brain, generating a 

model with a voxel size of 1 mm3. The MRI data was segmented into five tissues; skin, 

skull, CSF, grey matter and white matter. The authors found the thickness of tissue layers 

varied significantly with anatomical position, identifying a severe limitation of the 

simplified concentric sphere head models that had been used in earlier investigations, as 

previously described. The mean values for tissue properties were obtained from a variety 

of sources resulting in conductivities of 0.465, 0.010, 1.654, 0.276, and 0.126 S/m for 

skin, skull, CSF, grey matter, and white matter, respectively. The model incorporated a 

figure-8 coil with 35 mm radii windings composed of a single turn of copper wire having 

radius of 7 mm. 

Yang et al. [33] identified the need for increased localization of stimulation to 

develop the use of TMS beyond brain mapping, treatment of mood disorder, and 

associated medical problems. They indicated the need for realistic head models to 

achieve this goal due to the difficulty in estimating sites of stimulation. Previously, the 

determination of stimulated sites was achieved experimentally, reducing the efficiency of 

the procedure. Yang et al. indicate much of the TMS research continues to be done in 

free space and describe the need for head modeling due to differences in the properties of 

tissue having an effect upon the electric field and eddy current distribution in the head.  
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The complex geometry and tissue properties within the human head make 

analytical solutions difficult to achieve. Numerical methods such as such as finite 

element analysis can be utilized but improved realistic models are still required. Yang et 

al. [33] developed a new head model with greater complexity than previous 

investigations. The resulting three-dimensional model consisted of 420,875 nodes and 

315,190 elements, containing scalp, skull, CSF, and the brain. Calculations were 

performed for a figure-8 coil placed over the vertex of the head, with 6 turns and inner 

radii 22.5 mm. The results of the study with the new head model showed that the field 

intensity decreased with distance from the coil but also that the stimulation range became 

wider with distance from the coil. This is indicative of the challenges posed in trying to 

stimulate below the cortical surface. 

Sekino et al. [34] perform numerical simulations of eddy currents induced by 

TMS using another head model to study eddy currents induced in the cerebellum. The 

stimulating coils modeled had a diameter of 110 mm and current of 44.2 kA turns, 

generating a field of 0.56 T at the center of the coil. The largest current density calculated 

in the cerebellum was 2.9 A/m2. The maximum depth at which an eddy current was 

predicted to be induced was 10 mm below the surface of the cerebellum but as indicated 

in other studies, currents at this depth are unlikely to be of sufficient magnitude to cause 

depolarization of neural cell membranes, or resulting neural stimulation. The authors 

stated their objective to build upon earlier work by determining intensity and localization 

of induced eddy currents in the cerebellum. The main goal of the investigation was to 

study the effect of tissue depth upon the localization of stimulation. The cerebellum is an 

adequate choice of brain region for this purpose as the average distance between it and a 
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TMS stimulator coil is likely to be 30 or 40 mm whereas the distance between a TMS 

stimulator coil and the cerebrum can be less than 20 mm [34]. Sekino et al. utilized a 

three-dimensional model developed by the Brooks Air Force Laboratory. This was the 

first model to use a significant number of tissue structures but was implemented with a 

spatial resolution of only 3 mm. The original model had a spatial resolution of 1 mm but 

the computational time required to use the highest resolution was found to be impractical 

by the authors at the time of the study. In total, the model was segmented into 24 distinct 

tissues, allowing an improved finite element result to be obtained with 189,975 nodes and 

177,649 elements. The tissue properties for this study were obtained from Gabriel et al. 

[35]–[37], which are still widely used. To improve the accuracy of the model a realistic 

monophasic waveform was simulated with a duration of 1 ms. The coil was positioned 40 

mm left of the inion, where the inion connects to the left mastoid. The field produced was 

calculated with the Biot-Savart law as described in the next chapter. Each coil was 

segmented into 72 elements and the calculation performed for each. The eddy current 

distribution was calculated by solving (2.1). 

 ∇2P =σ δB(r,t)
δ t

  (2.1) 

Datta et al. [38] used a similar methodology to calculate the electric fields 

produced by tDCS devices. Values for conductivity chosen were 0.2, 1.65, 0.01, and 

0.465 S/m for the brain, CSF, skull, and skin, respectively. The model generated for this 

study had improved neural geometry compared to realistic models previously described, 

having greater geometric detail at the cortical gyri/sulci level, although the authors 

identity the model could be further improved by consideration of the differences in the 

tissue properties of the grey and white brain matter [38]. 
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Effects on the induced electric field in the brain due to geometrical head model 

data, conductivity parameters and stimulation position was studied by Kim et al. [39]. 

This investigation made use of a head model developed by Zubal et al. [40] featuring 

increased resolution from which Kim et al. segmented seven tissues; skin, skull, CSF, 

gray matter, white matter, cerebellum, and cerebral ventricle, with conductivities of 0.33, 

0.042, 1.79, 0.4, 0.2, 0.33, and 1.79 S/m, respectively. In addition to performing 

simulations of the induced electric field, a head phantom based upon the Zubal data was 

constructed from acrylic, with each of the seven regions represented. Varying electrical 

conductivities were achieved by adding the appropriate amount of sodium chloride to 

distilled water [39]. Experimental results with the head phantom were used to verify 

simulated results. Chen and Mogul [41] furthered developments in realistic head models 

by creating a model from multiple modality images. The major development in head 

model complexity in this study was the incorporation of microstructure detail via 

neocortical columnar structures. Miranda et al. [42] performed further studies into the 

effect of tissue heterogeneity and anisotropy upon induced electric field distribution, 

finding heterogeneity and anisotropy can introduce radial components to the induced 

electric field which is not observed when using isotropic conductors for head models. 

A number of the head models described are depicted in Figure 2.1. A challenging 

aspect of performing the calculation of induced electric field or current density is 

determining the dielectric tissue properties, electrical conductivity and relative 

permittivity. Generally, permittivity increases with lower frequencies but consensus on 

values appropriate for TMS have previously not been established with a very wide range 

of suggested values between 102 and 107 for the TMS frequency spectrum.  
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Figure 2.1. Head models utilized for electromagnetic modeling as used by (a) Thevenet et al. (1992), (b) 

Roth et al. (1993), (c) Miranda et al. (2003), (d) Im et al. (2003), (e) Ming-Xin et al. (2005), (f) Pu et al. 

(2009), and (g-h) Kim et al. (2009). 
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CHAPTER III 

ELECTROMAGNETIC THEORY 

3.1 Analytic calculation of induced electric field 

 

The electric field induced in the brain can be calculated analytically if certain 

constraints are imposed on the calculation. The electric field around a current path can be 

determined as shown in (3.1). 

 
 

!
E ⋅dl = − dB

dt
⋅ds∫∫"∫   (3.1) 

	  
Assuming the induced electric field will form a circular path and that a uniform magnetic 

flux density is produced by the stimulator coil (3.2) and (3.3) can be asserted. 

 2πrE = πr2 dB
dt

  (3.2) 

 E = r
2
dB
dt

  (3.3) 

The magnetic flux density due to a sinusoidal current pulse can be calculated by (3.4). 

 B = B0 sin
2π
τ
t⎛

⎝⎜
⎞
⎠⎟   (3.4) 

Substituting the derivative of (3.4) into (3.3) yields the induced electric field as shown in 

(3.5). 

 E = r
2
2π
τ

⎛
⎝⎜

⎞
⎠⎟ B0 cos

2π
τ
t⎛

⎝⎜
⎞
⎠⎟   (3.5) 

If we assume a pulse duration of 400 µs, an induced current path length of 0.01 m, and a 

magnetic flux density produced by the coil of 1 T, then the induced electric field will be 

78.5 V/m. This method requires various assumptions and highlights that in order to 
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obtain detailed information of the distribution of electric field in the brain, numerical 

methods need to be employed because analytic solutions only exist for the most 

simplified cases. 

Similar calculations can be performed to calculate other quantities relating to how 

the tissue responds to the presence of the magnetic field produced by the TMS coil. Using 

the electric field calculated in (3.5) the induced current density can be calculated by the 

relation J = σE. Assuming an electrical conductivity 1 S/m, a current density of 78.5 

A/m2 can be calculated. Charge density can also be derived from the relation Q = J∆t 

yielding 3.925 mC/m2.  

A quantity that is often useful to consider in studies of electromagnetic radiation 

and biological tissue is the specific absorption rate (SAR). The energy dissipated by each 

pulse can be calculated by (3.6). 

 J 2

2σρ
τ   (3.6) 

This yields a value of 0.616 mJ/kg. If a pulse repetition rate of 1 Hz is employed a SAR 

of 0.616 mW/kg will occur. 

 

3.2 Numerical methods  

 

Assuming the relations in (3.7) to (3.10),  

  
!
B = µ

!
H   (3.7) 

  D
!"
= εE
!"

  (3.8) 

  J
!"
m = ′ρ H

!"!
  (3.9) 
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  J
!"
e =σ E

!"
  (3.10) 

the time-dependent Maxwell’s curl equations can be defined in differential form as 

shown in (3.11) and (3.12). 

 
 

δH
!"!

δ t
= − 1

µ
∇× E
!"
− ′ρ
µ
H
!"!

  (3.11) 

 
 

δ E
!"

δ t
= 1
ε
∇ × H
!"!

− σ
ε
E
!"

  (3.12) 

The finite-difference time-domain (FDTD) formulation originally proposed by Yee [1] 

was initially intended to be used in isotropic, homogeneous media on a uniform grid, 

utilizing the central difference approximation. Second order accuracy is achieved using 

second order finite difference approximation for (3.11) and (3.12) for time and space. 

 δu
δ x
(i, j,k,n) =

ui+ 12, j ,k
n − ui− 12, j ,k

n

Δx
+O (Δx)2⎡⎣ ⎤⎦   (3.13) 

 δu
δ t
(i, j,k,n) =

ui, j ,k
n+ 12 − ui, j ,k

n− 12

Δt
+O (Δt)2⎡⎣ ⎤⎦   (3.14) 

The indices i, j and k indicate nodes in the spatial FDTD grid. 

 
Ex i, j ,k

n+1 − Ex i, j ,k

n

Δt
= 1
ε i, j ,k

Hz i, j+ 12,k

n+ 12 − Hz i, j− 12,k

n+ 12

Δy
−
Hy i, j ,k+ 12

n+ 12 − Hy i, j ,k− 12

n+ 12

Δz
−σ i, j ,k Ex i, j ,k

n+ 12

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 (3.15) 

The x-component of the electric field in (3.12) is determined in FDTD by the central 

difference method as shown in (3.16). 

 Ex i, j ,k

n+ 12 =
Ex i, j ,k

n+1 + Ex i, j ,k

n

2
  (3.16) 

Therefore, (3.15) can be written as, 
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  (3.17) 

This procedure allows Maxwell’s curl equations to be discretized yielding explicit 

expressions for all components of magnetic and electric field. The stability of the method 

is defined by the Courant-Friedrichs-Lewy criterion as in (3.18) for the given increments. 

 Δt ≤ 1
c 1

(Δx )2 +
1

(Δy)2 +
1

(Δz )2
  (3.18) 

If a harmonic oscillation ejωt is assumed, Maxwell’s curl equations can be 

transformed into the frequency domain. Assuming a quasi-static model, the magnetostatic 

vector potential can be calculated by the Biot-Savart law as shown in (3.19).  

 
 

!
A0 (
!r ) = µ0

4π

!
J0 (
!r ')

!r − !r 'Ω
∫ d!r '   (3.19) 

The vector potential A is decoupled from the electric field E, which is calculated by 

(3.20), 

  
!
E = − jω

!
A +∇φ =

!
Es +

!
Ei   (3.20) 

where ∇⋅Es = 0 (solenoidal) and ∇⋅Ei (irrotational). A magneto-quasi-static method can 

be implemented as shown in (3.21). 

  ∇⋅σ∇φ = jω∇⋅(σ
!
A0 )   (3.21) 
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Such an implementation is used in the low-frequency solver in SEMCAD X 

electromagnetic simulation software (Schmid & Partner Engineering AG, Zurich, 

Switzerland), which is utilized in the following studies. 
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CHAPTER IV 

RESULTS I: ANATOMICALLY REALISTIC HUMAN HEAD MODELING 

4.1 Effect of head model complexity 

 

The majority of previous electromagnetic studies of TMS have utilized simplified 

human head models, although some increase in complexity has been observed in more 

recent years. Effective modeling of TMS allows researchers to determine the locus of 

stimulation and can ultimately be used to aid in the development of new TMS coils by 

identifying the advantages novel coil designs offer. 

The effect of head model complexity has been investigated to determine the 

necessity of anatomically realistic head models and the extent to which inhomogeneous 

models affect the calculated electric field induced in the brain during TMS. Initially, 

three three-dimensional human head models of varying complexity have been considered.  

The most primitive model, which is prevalent in earlier literature but still often 

utilized, consists of a homogeneous sphere as shown in Figure 4.1 (a). In this study the 

radius of the sphere is assumed to be 100 mm. In addition to the spherical head model, a 

homogeneous volume with the external dimensions and features of a human head, the 

standard anthropomorphic model (SAM), will also be used, Figure 4.1 (b). Finally, an 

anatomically realistic human head model, derived from structural MRI data of a 34-year-

old adult male has been employed, originally part of the Virtual Family Project dataset 

[1], Figure 4.1 (c).  The advantage of a realistic model is the ability to independently 

apply tissue properties for each distinct tissue type that has been segmented in the head 
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model. This ability is significant as some neighboring tissues in the head can have 

electrical conductivity values that differ by more than an order of magnitude. 

 

Figure 4.1. Three-dimensional human head models, (a) homogeneous sphere, (b) homogeneous standard 

anthropomorphic model, and (c) inhomogeneous anatomically realistic human head model derived from 

structural MRI data of an adult male. 

For the purposes of this study, dielectric tissue values have been calculated from 

the IT’IS material parameter database [2]. The database is based upon a survey of all 

relevant literature on the subject of tissue parameters, which has been periodically 

updated since its inception in 2011, with the most recent version 2.5 being released on 

August 1st 2014. The studies described in this text make use of parameters from this most 

recent version unless otherwise stated. A sample of dielectric properties obtained from 

the database for the main tissues of the head are shown in Table 4.1. 

Table 4.1. Values of dielectric tissue properties at 2.5 kHz, obtained from IT’IS database [2]. 

Tissue Relative Permittivity  Electrical Conductivity [S/m] 

Brain (Grey Matter) 7.81 × 104 1.04 × 10-1 

Brain (White Matter) 3.43 × 104 6.45 × 10-2 

Cerebellum 7.84 × 104 1.24 × 10-1 

Cerebrospinal Fluid 1.09 × 102 2.00 × 100 

Skin 1.14 × 103 2.00 × 10-4 

Skull 1.44 × 103 2.03 × 10-2 
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The skin component of this data comprises the cellular epidermis and dermis but 

not the outermost stratum corneum that contains no excitable nerve endings. A complete 

list of utilized parameters can be found in the appendices of this text. 

The method for solving the magnetic and electric fields implements a low-

frequency solver, as described in Chapter 3. For each model the parameters relating to the 

stimulator coil remained the same. A sinusoidal magnetic flux density of 2.5 kHz and 

peak current of 5 kA were assumed. The solution domain consisted of 6.5, 7.2 and 6.1 

million voxels for the spherical, SAM and inhomogeneous head models, respectively. 

The homogeneous spherical and SAM models were assigned an averaged electrical 

conductivity of 0.33 S/m and relative permeability and relative permittivity of 1 and 

11000, respectively. A circular coil based upon a Magstim HP90 (R) coil and a figure-8 

coil based upon a Magstim D70 (R) coil were both modeled for the purposes of this 

study. The circular coil comprised of 14 turns with internal radius 33.5 mm and external 

radius 62.5 mm. Both windings of the figure-8 coil comprised of 9 turns with internal 

radius 27.5 mm and external radius 47.5 mm. 

To ensure valid field values were obtained, measurements of the magnetic field 

produced by the modeled figure-8 coil were conducted. A gaussmeter and axial Hall 

probe with an active component area of 0.46 mm2, positioned by a multi-axis linear stage 

system with positioning accuracy of 0.6 µm was utilized. Axial magnetic field 

measurements were obtained along the coil length (x-axis) at distances of 20 and 50 mm 

(z-axis) from the figure-8 coil as shown in Figure 4.2. These distances were chosen as 20 

mm is a depth at which neural stimulation is currently feasible in the head and 50 mm 
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represents a target depth for future TMS coil designs. For reference, the distance between 

scalp and cortical surface is typically 14.3 mm [3].  

 

Figure 4.2. Measured and calculated axial magnetic field along coil length (x-axis) at 20 and 50 mm (z-

axis) from Magstim D70 (R) coil at 100% stimulator output, energized with Magstim Rapid2
 stimulator. 

At the distances concerned, the largest field intensities are observed at the center 

of each coil winding. At 20 mm this value reaches approximately 0.5 MA/m reducing to 

0.15 MA/m at a distance of 50 mm. The results obtained through measurement and 

calculation of the magnetic field show good agreement. Based on this corroboration we 

can assume calculated results of electric field to also be valid, which provides a practical 

estimation of where stimulation is likely to occur in the brain. 

The electric field needed to cause neural stimulation has been reported to be 

between 20 and 100 V/m [4]. The calculated magnetic and electric field induced in the 

medial coronal plane of each head model by the modeled circular coil is shown in Figure 

4.3. 
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Figure 4.3. Calculated magnetic and electric field in the medial coronal plane of (a-b) homogeneous 

sphere, (c-d) homogeneous standard anthropomorphic model, and (e-f) inhomogeneous anatomically 

realistic human head model, with modeled circular coil. 
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Theoretically, the presence of the head should have no effect upon the magnetic 

field produced by the coil. This result is confirmed in Figure 4.4, which shows the 

magnetic field along the model z-axis, indicated by the green line in Figure 4.3 (a), (c), 

and (e), passing through the vertex of the head and the center of circular coil. In each case 

the head model has no effect on the magnetic field calculated inside the head. The figure 

shows that the magnetic field at the vertex of the head is approximately 0.7 MA/m, 

reducing to approximately 0.5 MA/m at a depth of 20 mm and 0.2 MA/m at a depth of 50 

mm. 

 

Figure 4.4. Calculated magnetic field along model z-axis, through vertex of the head in spherical, SAM 

and inhomogeneous head models with modeled circular coil. 

The electric field induced in each head model, 20 mm off-axis, in the medial 

coronal plane, as indicated by the green line in Figure 4.3 (b), (d), and (f), is shown in 

Figure 4.5. The spherical and SAM head models show similar characteristics while the 

inhomogeneous head model shows variation in the induced electric field not observed in 

the homogeneous models. Each model induces an electric field above 150 V/m at the 
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surface of the head, reducing to between approximately 40 and 60 V/m at a depth of 50 

mm. 

 

Figure 4.5. Calculated electric field induced 20 mm from z-axis origin, in spherical, SAM and 

inhomogeneous head models with circular coil. 

The extent of this variation is more clearly demonstrated by comparing the 

electric field induced in transverse planes of the spherical and inhomogeneous head 

model as shown in Figure 4.6. At a distance of 10 mm the planes show a similar 

distribution of the induced electric field. At greater distances of 20 and 30 mm, 

significant changes in the distribution and magnitude of the electric field can be observed. 

This highlights the limitations of the simplified homogeneous model and indicates an 

inability of the homogeneous model to accurately determine the induced electric field at 

depth in the brain. 

The distribution of magnetic flux density on the surface of the homogeneous 

SAM head model and on the surface of the skin, grey matter and white matter of the 

inhomogeneous head model are shown in Figure 4.7. The homogeneous SAM head  
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Figure 4.6. Induced electric field in transverse planes in (a) spherical and (b) inhomogeneous model 10 

mm below the vertex, (c) spherical and (d) inhomogeneous model 20 mm below the vertex, and (e) 

spherical and (f) inhomogeneous model 30 mm below the vertex, induced by a modeled circular TMS coil. 
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model shows similar magnetic flux density distribution to the inhomogeneous model on 

the surface of the head but is unable to show the magnetic flux density distribution on the 

surface of the brain. 

 The distribution of electric field induced on the surface of the homogeneous SAM 

head model and on the surface of the skin, grey matter and white matter of the 

inhomogeneous model are shown in Figure 4.8. Again, the homogeneous SAM head 

model shows similar electric field distribution to the inhomogeneous model on the 

surface of the head but is unable to show the electric field distribution on the surface of 

the brain. 

While circular coils are still often used for TMS, figure-8 coils are more prevalent 

due to their improved targeting capabilities. The calculated magnetic and electric field 

induced in the medial coronal plane of each head model by the modeled figure-8 coil is 

shown in Figure 4.9.  

Results of the magnetic field generated by the figure-8 coil show that the 

magnetic field in all head models is the same and not influenced by the presence of a 

head model, as shown in Figure 4.10. The figure also shows that the magnetic field at the 

surface of the head is approximately 0.75 MA/m, reducing to approximately 0.3 MA/m at 

a depth of 20 mm and 0.1 MA/m at a depth of 50 mm. 
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Figure 4.7. Calculated magnetic flux density on (a) surface of inhomogeneous SAM head model and 

surface of (b) skin, (c) grey matter, and (d) white matter of inhomogeneous head model with circular coil. 

 

Figure 4.8. Calculated electric field induced on (a) surface of inhomogeneous SAM head model and 

surface of (b) skin, (c) grey matter, and (d) white matter of inhomogeneous head model with circular coil. 
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Figure 4.9. Calculated magnetic and electric field in the medial coronal plane of (a-b) homogeneous 

sphere, (c-d) homogeneous standard anthropomorphic model, and (e-f) inhomogeneous anatomically 

realistic human head model, with modeled figure-8 coil. 
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Figure 4.10. Calculated magnetic field along model z-axis through vertex of the head in spherical, SAM 

and inhomogeneous head models with modeled figure-8 coil. 

 

Figure 4.11. Calculated electric field induced along model z-axis through vertex of the head in spherical, 

SAM and inhomogeneous head models with modeled figure-8 coil. 

The electric field induced along the model z-axis, passing through the vertex of 

each of the three models is shown in Figure 4.11. Again, the result of the two 

homogeneous models are very similar, with variation in the induced field observed in the 
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inhomogeneous model. For this coil, the electric field induced at the vertex of the head is 

over 250 V/m for each head model, reducing to less than 50 V/m at a depth of 50 mm.  

The electric field induced in transverse planes 10, 20 and 30 mm below the vertex 

of the head for the spherical and inhomogeneous head models are shown in Figure 4.12. 

Near to the surface of the coil, at a distance of 10 mm, some similarities in the 

distribution of the induced electric field can be observed between the homogeneous 

sphere and inhomogeneous head models. As the distance is increased to 20 mm fewer 

similar features can be distinguished and at 30 mm only regions at the side of the plane, 

at the surface of the head, show similar electric field distribution. This supports the 

hypothesis that the simplified homogeneous models are unable to accurately model the 

induced electric field at depth in the brain. 

The distribution of magnetic flux density on the surface of the homogeneous 

SAM head model and on the surface of the skin, grey matter and white matter of the 

inhomogeneous model with the modeled figure-8 coil are shown in Figure 4.13. As 

before, the homogeneous SAM head model shows similar magnetic flux density 

distribution to the inhomogeneous model on the surface of the head but is unable to show 

the magnetic field distribution on the surface of the brain.  

The distribution of electric field induced on the surface of the homogeneous SAM 

head model and on the surface of the skin, grey matter and white matter of the 

inhomogeneous model are shown in Figure 4.14. Again, the homogeneous SAM head 

model shows similar electric field distribution to the inhomogeneous model on the 

surface of the head but is unable to show the magnetic field distribution on the surface of 

the brain. 
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Figure 4.12. Induced electric field in transverse planes in (a) spherical and (b) inhomogeneous model 10 

mm below the vertex, (c) spherical and (d) inhomogeneous model 20 mm below the vertex, and (e) 

spherical and (f) inhomogeneous model 30 mm below the vertex, induced by a modeled figure-8 TMS coil. 
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Figure 4.13. Calculated magnetic flux density on (a) surface of inhomogeneous SAM head model and 

surface of (b) skin, (c) grey matter, and (d) white matter of inhomogeneous head model with figure-8 coil. 

 

Figure 4.14. Calculated electric field induced on (a) surface of inhomogeneous SAM head model and 

surface of (b) skin, (c) grey matter, and (d) white matter of inhomogeneous head model with figure-8 coil. 
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The shortcomings of the homogeneous models at depth in the brain can be easily 

demonstrated by considering the induced electric field along the model x-axis at various 

distances from the coil surface. The electric field calculated 20 mm from the coil surface 

along the coil x-axis is shown in Figure 4.15. Generally it is anticipated that the 

maximum induced electric field will lie below the coil center, at x = 0. At 20 mm, the 

magnitude of the electric field in the inhomogeneous model is approximately 70% of the 

electric field calculated for the homogeneous models whereas the peaks at ± 50 mm are 

greater in the inhomogeneous case. This suggests the field at the surface of the head is 

greater than determined with a homogeneous model and attenuates more rapidly. 

Figure 4.16 shows the calculated electric field at a distance of 50 mm along the 

coil x-axis. In this case we more clearly see the large difference between simplified and 

realistic head models. This disparity is sufficiently large enough to erroneously identify 

likely regions of neural stimulation during TMS. 

The inhomogeneous model indicates the value of induced electric field at this 

depth below the vertex is well below the field required to generate an action potential and 

cause neural stimulation. However, the electric field values closer to the surface of the 

head at this distance from the coil are greatly increased, increasing the likelihood of 

having two stimulated sites with a spatial separation of 100 mm. 

The theoretical calculations and empirical measurements exhibited demonstrate 

the impact of human head model complexity upon the calculation of electric field in the 

brain for neural stimulation. It is evident that tissue heterogeneity in the brain has a 

significant effect on the induced electric field. In general, it is observed that a simplified 
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homogeneous head model will overestimate the field intensity at depth in the brain and 

underestimate the field intensity at the surface. 

 

Figure 4.15. Calculated electric field profile 20 mm from coil surface for three human head models with 

figure-8 coil. 

 

Figure 4.16. Calculated electric field profile 50 mm from coil surface for three human head models with 

figure-8 coil. 
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A point that arises from these results is that, as the physical characteristics of the 

brain of each TMS subject will vary, the spatial distribution of the induced electric field 

will also vary. As a result, one TMS coil may not accurately stimulate a desired cortical 

target for a variety of subjects. The results also highlight the necessity to implement 

realistic head models when assessing novel coil designs for TMS applications, or else 

accurate determination of stimulated sites cannot be asserted. 

 

4.2 Grid resolution and model validation 

 

The importance of grid resolution has been studied to establish if valid results are 

yielded by these calculations. A series of simulations have been performed with the 

inhomogeneous head model and modeled figure-8 coil with approximately 0.2, 0.5, 1, 2, 

5, 10, and 20 million voxels in the solution domains. Model parameters and 

computational metrics are given in Table 4.2. 

Table 4.2. Simulation duration and peak memory usage for solution domains of varying resolution. 

Number of voxels 

(millions) 

Grid dimensions Simulation duration 

(hh:mm:ss) 

Peak memory usage 

[MB] 

0.20328 55 × 66 × 56 00:01:25 56.9570 

0.50616 74 × 90 × 76 00:03:47 72.4688 

1.00685 92 × 114 × 96 00:08:10 101.027 

2.00448 116 × 144 × 120 00:17:16 160.121 

5.06702 157 × 198 × 163 00:48:48 363.301 

9.99600 196 × 250 × 204 01:44:04 739.797 

20.4900 248 × 319 × 259 03:45:36 1575.14 
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The lowest resolution simulation had a grid size of 55 × 66 × 56 elements, 

approximately 0.2 million voxels, and required only 1 minute and 25 seconds to 

complete, utilizing just 56 MB of memory.  The highest resolution simulation had a grid 

size of 248 × 319 × 259 elements, approximately 20 million voxels, and required 3 hours 

and 45 minutes to complete, utilizing over 1.5 GB of memory. A linear relationship was 

observed between the number of voxels in the solution domain and both the overall 

simulation duration and peak memory usage, as shown in Figure 4.17. 

 

Figure 4.17. Simulation duration and peak memory usage for solution domains of varying resolution. 

The magnetic field in the medial coronal plane for each simulation is shown in 

Figure 4.18. The coarseness of the grid and resulting calculated magnetic field 

distribution in the simulations with fewer voxels is visually evident, but increasingly 

difficult to distinguish as the grid resolution increases. 

The electric field induced in the head model for each of these solutions is shown 

in Figure 4.19. It is evident that additional features are present in the solutions with a  
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Figure 4.18. Calculated magnetic field produced by a modeled figure-8 coil in the medial coronal plane in 

solution domains consisting of (a) 0.20328, (b) 0.50616, (c) 1.00685, (d) 2.00448, (e) 5.06702, (f) 9.99600, 

and (g) 20.4900 million voxels. 

 

Figure 4.19. Calculated electric field induced in an inhomogeneous head model by a modeled figure-8 coil 

in the medial coronal plane in solution domains consisting of (a) 0.20328, (b) 0.50616, (c) 1.00685, (d) 

2.00448, (e) 5.06702, (f) 9.99600, and (g) 20.4900 million voxels. 
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greater number of voxels, particularly the area of high field in the left hemisphere in the 

medial coronal plane. 

 

Figure 4.20. Calculated magnetic field along the model z-axis, in the medial coronal plane, passing through 

the vertex of the head, as indicated by the green lines in Figure 4.18. 

 

Figure 4.21. Calculated electric field induced in an inhomogeneous head model by a modeled figure-8 coil, 

along the model z-axis, in the medial coronal plane, passing through the vertex of the head, as indicated by 

the green lines in Figure 4.19. 
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The magnetic field calculated in the medial coronal planes, along the model z-

axis, passing through the vertex of the head is shown in Figure 4.20. The difference in 

grid resolution has an effect on the magnetic field calculated in the locality of the coil 

windings but little effect on the magnetic field away from the coil, in the head region. 

The electric field calculated in the medical coronal planes, along the model z-axis, 

passing through the vertex of the head is shown in Figure 4.21. Discernable differences  

can be identified between simulated results, with greater detail and features present in the 

calculations utilizing a larger number of voxels. 

The two previous figures demonstrate results along the origin of the z-axis, where 

all values are extracted from x = 0 mm. If values are desired off-axis, for example 20 mm 

from the coil surface, in the medial coronal plane, variations in the discretization step size 

means not all models have a value calculated at exactly z = -20 mm. In this case, values 

from the nearest grid position must be analyzed. The results of this scenario are presented 

in Figure 4.22. Good corroboration of magnetic field values is seen for models with 2 

million or more voxels. Significant differences are observed in the models with fewer 

voxels. 

The electric field calculated 20 mm below the vertex of the head, in the medial 

coronal plane is shown in Figure 4.23. The results again show that detail is lost in the 

models with fewer than 2 million voxels. This is highlighted by the peak at 

approximately x = -0.015 m not being present in the data obtained from those models. 
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Figure 4.22. Calculated magnetic field along the model x-axis, 20 mm below the coil surface and vertex of 

the head, in the medial coronal plane. 

 

 

Figure 4.23. Calculated electric field induced in an inhomogeneous head model, along the model x-axis, 20 

mm below the coil surface and vertex of the head, in the medial coronal plane. 
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4.3 Variation of dieletric parameters 

 

Biological material is highly inhomogeneous, consisting of cellular structures 

containing water, ions, organic molecules and insoluble particles. Unlike electrical 

conductors such as copper, biological material facilitates charge transportation through 

ionic conduction. The nature of biological material therefore has an effect on how it 

interacts with an electric field. If the size of the structural features in the tissue are 

smaller than the wavelength of the field the bulk response of a tissue can be described by 

the relative permittivity [5]. For TMS the dielectric properties are around the α-

dispersion region, 1-100 kHz. In this range, the relative permittivity of some tissues can 

be large, with values from approximately 103 to 107 [6]–[8]. Establishing values of 

relative permittivity has proven difficult due to disagreement between in vivo and in vitro 

measurements and variation in permittivity of exanimated tissue [9]. Measurements of 

muscle tissue in vivo have yielded relative permittivity values up to 107 [10], [11]. This 

can be explained in part by interfacial polarization and counterion diffusion effects [5] 

but further examination of the properties is still needed. The frequency dependence of 

relative permittivity and electrical conductivity of grey matter calculated with the IT’IS 

material parameter database [2] is shown in Figure 4.24. 

Through electromagnetic modeling, the extent to which variation in relative 

permittivity and electrical conductivity affects induced electric fields during TMS can be 

examined. Using the anatomically realistic head model, the relative permittivity and 

electrical conductivity of different brain tissues can be varied and the effect on the 

resulting induced electric field can be studied. Figures 4.25 and 2.26 demonstrate that the 
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induced electric field during TMS is nearly independent of variation of the relative 

permittivity. The induced electric field profiles for the two heterogeneous head models 

did not vary. The variation in the induced electric field was due to the difference in the 

conductivities of the tissue but not due to the differences in relative permittivity up to the 

point where displacement currents are in the range of conduction currents.  

 

Figure 4.24. Frequency dependence of relative permittivity and electrical conductivity of grey matter 

calculated with the IT’IS material parameter database.  

This result is significant as in the framework of TMS it is understood that spatial 

variations in induced electric field at axon terminations or bent paths, like the interface 

between grey and white matter can have significant impact on the site of stimulation [12]. 

Wagner et al. described the effect of different relative permittivities on current density in 

the brain, showing no significant impact is caused by changing values between 102 and 

104 [13]. However, the model utilized in the present study has higher resolution [2]. 

The effect on induced electric field can be studied by modeling the electrical 

conductivity of a single type of tissue with varied values. The electrical conductivity of 
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principal tissues in the brain have been increased by 50, 100, and 150% without changing 

the relative permittivity and electrical conductivity values of surrounding tissues. The 

results are shown in Figure 4.27. 

 

Figure 4.25. Calculated induced electric field in head models with (a) varying electrical conductivity and 

relative permittivity, (b) varying electrical conductivity and constant relative permittivity, (c) constant 

electrical conductivity and relative permittivity. 

 

Figure 4.26. Calculated induced electric field 20 mm from coil surface in head models with (a) varying 

electrical conductivity and relative permittivity, (b) varying electrical conductivity and constant relative 

permittivity, (c) constant electrical conductivity and relative permittivity. 
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Figure 4.27. Calculated induced electric field decay in anatomically realistic head model utilizing a 

modeled figure-8 coil positioned at the vertex with electrical conductivity of the (a) cerebrospinal fluid, (b) 

grey matter, (c) white matter, and (d) skull increased by 50, 100, and 150%.  

The results show that the electric field is altered in a number of regions in the 

head, not just the region where the electrical conductivity value has been modified. 

Changing the electrical conductivity of CSF has an effect on the induced electric field in 

the CSF and grey matter region while having a smaller effect on the skin region, and little 

effect on the induced electric field in the skull. Similarly, changing the electrical 

conductivity of the grey and white matter also affects the induced electric field in the 

grey matter. Variation of the electrical conductivity of the CSF caused the largest changes 

to the overall electric field than the other tissues. This indicates CSF is the most sensitive 

part of the head that influences the electric field induced in the brain during TMS. It is 

worth noting that the induced electric field depends on the change of magnetic field with 
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respect to time and this value changes with distance from the coil. Due to the structure of 

the head this cannot be avoided. Surprisingly, variation in the conductivities of white 

matter and grey matter do not influence the change in the electric field as significantly as 

CSF. 

 

4.4 Effect of brain size and coil orientation on induced electric field 

 

Most studies of TMS consider adult subjects but there is potential for the method 

to also be a beneficial tool for patients of younger ages. It is well known that the 

anatomical structure of the brain changes somewhat during childhood and earlier studies 

using scaled adult head models in the study of RF radiation have been shown to be 

erroneous. Using a variety of anatomically realistic human head models of varying age, 

the extent to which induced electric field depends upon the age of the subject can be 

determined. 

During infancy and adolescence complex structural changes occur in the brain. 

For example, a linear increase of white matter is observed whereas grey matter growth 

occurs pre-adolescence and decreases post-adolescence [14]. The latency of the 

ipsilateral silent period has also been seen to decrease from an age of 6 years to early 

adolescence [15], representative of myelination of the corpus callosum and the 

development of cortical inhibitory neurons. As shown previously in this chapter, the 

electric field induced by TMS depends on the dielectric properties of the brain tissue 

being stimulated. Indications suggest that other age-dependent parameters will also have 
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an effect on the induced electric field. Therefore, the nature of these changes needs to be 

studied at different stages of development. 

Previous modeling studies of electromagnetic fields in young subjects have 

utilized scaled adult models. These scaled models introduce anatomical errors due to the 

non-uniform growth of organs as identified in other studies [16], [17]. Anatomically 

realistic models of varying ages were obtained from the Virtual Family Project [1], 

shown in Figure 4.28, which are derived from MRI data of an adult male and female, 

aged 34 and 26 years, respectively, a female aged 11 years and male aged 6 years. The 

spatial resolution of the data is 0.9 × 0.9 × 2.0 mm in the trunk and limbs and 0.5 × 0.5 × 

1.0 mm in the head. Details of each subject are provided in Table 4.3. 

To observe the effect of the inhomogeneous tissue, equivalent homogeneous head 

models based on the standard anthropomorphic model (SAM) were developed, oriented 

and scaled to closely match the position and dimensions of the inhomogeneous models. 

As before, dielectric parameters for the tissues of each model were obtained from the 

IT’IS tissue database [2]. Each inhomogeneous head model is shown in Figure 4.29 with 

the modeled figure-8 TMS coil. 
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Figure 4.28. Anatomically realistic human body models of (a) 34-year-old male, (b) 26-year-old female, 

(c) 11-year-old female, and (d) 6-year-old male. 

 

Table 4.3. Anatomically realistic MRI-derived body model specifications. 

Sex 

 

Age  

[years] 

Height  

[m] 

Weight  

[kg] 

BMI  

[kg/m3] 

M 34 1.77 72.4 23.1 

F 26 1.63 58.7 22.0 

F 11 1.47 35.4 16.5 

M 6 1.17 19.3 14.0 
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Figure 4.29. Modeled figure-8 coil with anatomically realistic human body models of (a) 34-year-old male, 

(b) 6-year-old male, (c) 26-year-old female, and (d) 11-year-old female. 

 

The electric field induced in the central coronal plane of each inhomogeneous 

model and equivalent homogeneous head model are shown in Figure 4.30. The exposure 

scenario investigated considers the TMS coil targeting the tissue below the vertex of the 

head. 
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Figure 4.30. Induced electric field calculated in central coronal plane of (a) inhomogeneous 34-year-old 

male and (b) homogeneous equivalent, (c) inhomogeneous 26-year-old female and (d) homogeneous 

equivalent, (e) inhomogeneous 11-year old female and (f) homogeneous equivalent, and (g) 

inhomogeneous 6-year-old male and (h) homogeneous equivalent. 
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 The induced electric field calculated along each inhomogeneous model z-axis, 

through the vertex of the head is shown in Figure 4.31. For the inhomogeneous models, 

the values of electric field in the two child models differ from that of adult models 

significantly in the 20 to 30 mm region, where neural tissue is located. The same result 

for the homogenous equivalent models are shown in Figure 4.32. In the case of the 

homogeneous models, marginally lower values of electric field are calculated in the child 

head models, a result consistent with that of Weissman et al. where small animal brains 

were considered [18]. 

The shape of the coil will also have an effect on how electric field is distributed in 

the brain and should be considered when determining safety guidelines for pediatric TMS 

studies. These studies could be improved by considering the variation in dielectric 

properties that occur with age. Peyman et al. [19] have demonstrated that electrical 

conductivity of bone marrow reduces significantly with age although only slight changes 

in SAR are observed in radio frequencies investigations. Overall the results show that 

different protocols should be considered when conducting TMS experiments with 

pediatric patients to ensure desired neurological effects are achieved in a safe manner. 

 The effect of varying the TMS coil position and orientation have also been 

investigated.  Various orientations of the modeled figure-8 coil are shown in Figure 4.33 

with the adult male anatomically realistic human head model. In each case the cortical 

target remains the same but the coil has been rotated by 45-degree increments. 
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Figure 4.31. Induced electric field calculated along vertical z-axis in inhomogeneous models. 

 

Figure 4.32. Induced electric field calculated along vertical z-axis in homogeneous models. 
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Figure 4.33. Anatomically realistic human head model with four rotations of figure-8 coil. 

 

The resulting magnetic flux density on the surface of the grey matter is shown in 

Figure 4.34. The effect of coil orientation on the distribution of magnetic flux density is 

clearly evident. The electric field induced on the surface of the grey matter is shown in 

Figure 4.35. Distinctly different patterns of induced electric field on the surface of the 

grey matter are observed, despite the coil being centered above the same region. A 

significant effect on the localization of electric field on the surface of the head model is 

also observed, indicating that coil orientation can have a large effect on the volume of 

neural tissue that may be stimulated. 
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Figure 4.34. Magnetic flux density on surface of grey matter for four rotations of figure-8 coil, (a) 0 

degrees, (b) 45 degrees, (c) 90 degrees, and (d) 135 degrees. 

 

Figure 4.35. Induced electric field on surface of grey matter for four rotations of figure-8 coil, (a) 0 

degrees, (b) 45 degrees, (c) 90 degrees, and (d) 135 degrees. 
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 The induced electric field in the medial coronal plane of the anatomically realistic 

human head models is shown in Figure 4.36. This figure demonstrates the extent to which 

coil orientation affects the penetration of the induced electric field. 

 

Figure 4.36. Induced electric field profiles in medial coronal plane of anatomically realistic human head 

model for four rotations of figure-8 coil, (a) 0 degrees, (b) 45 degrees, (c) 90 degrees, and (d) 135 degrees. 

The figures demonstrate the differences in magnetic flux density and induced 

electric field that arise when changing coil orientation, even when centered over the same 

cortical target. An increased understanding of the resulting changes in induced electric 

field can be obtained by studying the effect of the gyral folding pattern as demonstrated 

in Figure 4.37. The figures indicate that gyrus ridges are preferentially stimulated when 

oriented parallel to the long axis of the figure-8 TMS coil. 
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Figure 4.37. Model of gryral folding pattern with (a) first coil orientation, (b) second coil orientation, 

rotated 90 degrees, (c) induced electric field in front-facing plane for first and (d) second orientation, and 

(e) side-facing orientation for first and (f) second orientation. 
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CHAPTER V 

RESULTS II: COIL DESIGN FOR TRANSCRANIAL MAGNETIC STIMULATION 

5.1 Analysis of existing coil designs 

 

 To improve the performance of TMS coils the characteristics of the existing 

devices must be fully understood. Magnetic field measurements have been performed to 

identify the differences between commercially available coil designs and determine their 

relative advantages and limitations. Axial magnetic field measured on the surface of four 

commercial TMS coils at 100% stimulator output is shown in Figure 5.1. The 

characterized coils are the circular Magstim HP90 (R) coil and figure-8 D70 (R), D70 

(AFC), and D70-2 coils. 

 

Figure 5.1. Measured axial magnetic field on surface of Magstim HP 90 (R), D70 (R), D70-2, and D70 

(AFC) TMS coils at 100% stimulator output. 
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 As expected, the circular and figure-8 coil designs have distinctly different field 

profiles. However, the D70-2 coil exhibits a significantly different distribution and higher 

peak magnitude of magnetic field than the other figure-8 coils, despite having a similar 

design. The three figure-8 coils compared are depicted in Figure 5.2. The Magstim D70 

(R) coil has a long-established design and is widely used in research. This particular coil 

possesses a control on the handle of the coil to initiate stimulation pulses and adjust the 

stimulator output level. The Magstim D70 (AFC) Air Film Coil differs from the other 

coils in that it features an integrated cooling fan, to mitigate coil heating during operation. 

The active cooling allows the coil to be operated for much longer periods of time than the 

standard D70 (R) coil. 

 The axial magnetic field measured 20 mm from the coil surfaces at 50% 

stimulator output is shown in Figure 5.3, together with calculated values from a modeled 

figure-8 coil. The measurements at this distance indicate that the D70 (AFC) coil 

produces lower intensity of magnetic field than the D70 (R), while the D70-2 coil 

produces a higher intensity. To determine the cause in variations of the magnetic field 

distribution and intensity produced by the three figure-8 coils, x-ray images were 

generated to reveal the dimensions of the current carrying conductor in each case and 

overall coil construction. The x-ray images are shown in Figure 5.4, revealing the 

construction of the D70-2 coil to be significantly different to the other two figure-8 coils. 

It is apparent the D70-2 coil utilizes Litz wire, which reduces skin and proximity effects. 

The inner and outer radii of the coil windings are also significantly different to that 

present in the D70 (R) and D70 (AFC) coils. 
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Figure 5.2. Magstim D70 (AFC), D70-2, and D70 (R) figure-8 TMS coils. 

 

 

 

Figure 5.3. Axial magnetic field measured 20 mm from coil surface for Magstim D70 (R), D70-2 and D70 

(AFC) figure-8 TMS coils, with calculated values produced by a modeled coil. 
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Figure 5.4. X-ray images of Magstim (a) D70 (AFC), (b) D70-2 containing Litz wire, and (c) D70 (R) 

figure-8 TMS coils. 
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 Measuring the magnetic field generated in an entire plane gives greater insight 

into the overall field distribution provided by the commercial coils. The axial magnetic 

field produced by the HP90 (R) circular coil in planes 20 and 40 mm from the coil 

surface with 50% stimulator output are shown in Figure 5.5. The highest measured value 

of axial magnetic field 20 mm from the coil surface is approximately 2 × 105 A/m, while 

at 40 mm the maximum field is approximately 1 × 105 A/m. 

 

 

Figure 5.5. (a) Measured axial magnetic field profile of Magstim HP90 (R) circular TMS coil at 50% 

stimulator output in planes 20 mm and (b) 40 mm from the coil surface. 

 

 The axial magnetic field produced by the D70 (R) figure-8 coil in planes 20 and 

40 mm from the surface of the coil at 50% stimulator output are shown in Figure 5.6. The 

maximum field intensity measured at 20 mm is approximately 1.5 × 105 A/m while at 40 

mm it is approximately 7 × 104 A/m, both significantly lower than the maximum field 

produced in these planes by the circular HP90 (R) coil. This is likely due to the HP90 (R) 

circular coil having 14 turns whereas the D70 (R) figure-8 coil has only 9 turns in each 

winding.  



www.manaraa.com

 

	  

85 

 

Figure 5.6. Measured axial magnetic field profile of Magstim D70 (R) figure-8 TMS coil at 50% 

stimulator output in plane 20 mm and (b) 40 mm from the coil surface. 

 

The axial magnetic field produced by the D70-2 and D70 (AFC) figure-8 coils in 

a plane 20 mm from the surface of the coils are shown in Figure 5.7. Whereas the 

standard D70 (R) coil produced a maximum field of approximately 1.5 × 105 A/m at this 

distance, the D70-2 coil produces a maximum of approximately 1.8 × 105 while the 

cooled D70 (AFC) coil produces approximately 1.35 × 105 A/m. 

 

 

Figure 5.7. (a) Measured axial magnetic field profile at 50% stimulator output in a plane 20 mm from the 

coil surface of Magstim D70-2 and (b) Magstim D70 (AFC) figure-8 TMS coils. 
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5.2 Halo coil design 

 

A novel coil design, the ‘Halo’ coil, a large circular coil capable of being placed 

around the head has been developed to increase the magnetic field at depth in the brain if 

used together with existing circular and figure-8 coils commonly used for TMS. The 

design has been optimized using finite element analysis software incorporating 

anatomically realistic human head models as described in Chapter 4. The Halo coil 

increases the depth to which the stimulating field penetrates, allowing more energy to be 

deposited into deeper regions of the brain. This enables the stimulation of subcortical 

regions that have previously not been reachable with commercial coils without 

encountering adverse physiological effects. 

Figure 5.8 (a) gives an overview of the Halo coil design, with the anatomically 

realistic head model of an adult male. The Halo coil has inner and outer radii of 138 and 

150 mm, respectively, and has five turns. In this study the Halo coil is operated 

simultaneously with a typical circular coil of mean diameter 90 mm, with 14 turns. The 

smaller circular coil is positioned 100 mm above the Halo coil. The optimized Halo coil 

was constructed, as depicted in Figure 5.8 (b) with a Magstim HP90 (R) coil, and was 

found to have a resistance of 0.048 Ω and an inductance of 17.966 µH at a frequency of 

10 kHz. 

 In this study, the Halo coil was used together with a circular coil, as it provides 

less decay of field as a function of distance than a conventional figure-8 coil [1]. A 

figure-8 coil can alternatively be used together with the Halo coil to increase localization 

of stimulation at the expense of penetration depth. 
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Figure 5.8. (a) Modeled and (b) constructed Halo coil with 90 mm circular coil in typical configuration, 

separated by 100 mm. 

As previously described, earlier studies of TMS coil design have relied on 

homogeneous spherical volume conductors as head models despite evidence that tissue 

heterogeneity and anisotropy have a significant effect on the distribution of electric field 

induced in the brain [2]. The anatomically realistic modeling technique described in 

Chapter 4 has been employed to accurately predict the site of neural stimulation during 

TMS to account for the variation in conductivities of the different brain tissues [3].  

The model implements a sinusoidal magnetic flux density with a frequency equal 

to 2.5 kHz and a peak current of 5 kA if 100% stimulator output is assumed. The SAM 

head model was also utilized, with conductivity, relative permittivity and relative 

permeability values of 0.33 S/m, 11000 and 1.0, respectively. Magnetic field 

measurements were performed on the constructed Halo coil with a Gaussmeter and axial 
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Hall probe, supported by a multi-axis positioning system. The coils were energized with a 

Magstim Rapid2 stimulator with either 50 or 100% output. 

The magnetic field generated by the circular HP90 (R) coil operated alone and 

then simultaneously with the Halo was studied for comparison. The Halo coil was 

positioned 100 mm below the HP90 (R) circular coil, consistent with the configuration 

shown in Figure 5.8. The magnetic field strength of the Halo coil at 20 and 40 mm below 

the vertex of the head is shown in Figure 5.9. In both instances the magnetic field is 

increased compared to the magnetic field produced by the circular coil when used 

independently. 

 

Figure 5.9. Calculated magnetic field 20 and 40 mm below the vertex of the head and circular coil surface. 

The electric field strength of both coils in a homogeneous medium is shown in 

Figure 5.10, at 20 and 40 mm from the surface of the circular coil and the vertex of the 

head. At both distances the electric field is increased throughout the head. This 

demonstrates the ability of the Halo coil to induce an electric field of higher magnitude 

and the capacity to initiate an action potential in neural tissue in deeper regions of the 
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brain than the circular coil operated alone. Figure 5.11 compares the measured and 

calculated magnetic field along the common coil axis for the described configuration. 

The results show very good agreement in both amplitude and rate of decay. 

 

Figure 5.10. Calculated electric field 20 and 40 mm below the vertex of the head and circular coil surface. 

 

 

Figure 5.11. Attenuation of magnetic field strength along common coil axis from surface of circular coil 

with and without Halo coil. 
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Along the common coil axis the Halo coil can increase the magnetic field strength 

by approximately 10% at a distance of 20 mm, and by approximately 50% at a distance 

of 50 mm from the circular coil, compared to the circular coil used independently. The 

magnetic field in the medial coronal and sagittal planes of the inhomogenous head model 

is shown in Figure 5.12. The electric field induced in the medial coronal and sagittal 

planes of the inhomogeneous head model are shown in Figure 5.13. 

 

 

Figure 5.12. Calculated magnetic field in (a) medial coronal and (b) sagittal planes for the inhomogeneous 

head model with Halo coil and 90 mm circular coil. 

 

Figure 5.13. Calculated electric field in (a) medial coronal and (b) sagittal planes of the inhomogeneous 

head model with Halo coil and 90 mm circular coil. 
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A benefit of the size of the Halo coil is the ability to reposition the coil to change 

the overall distribution of the magnetic and induced electric field. Figure 5.14 

demonstrates the change in the magnetic and electric field distribution by moving the coil 

50 mm closer to and away from the 90 mm circular coil. The coil can also be rotated as 

demonstrated in Figure 5.15. 

 

Figure 5.14. Calculated (a) magnetic and (b) electric field with Halo coil positioned 50 mm from 90 mm 

circular coil, and (c) magnetic and (d) electric field with Halo coil positioned 150 mm from 90 mm circular 

coil. 

In addition to penetration depth, localization of stimulation is an important 

criterion in the design of TMS coils. The Halo coil does not increase the localization of 
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electric field but existing methods to suppress the surface field could be employed 

together with the Halo coil in order to improve localization of the field. 

The calculations and experimental measurements demonstrate the performance 

gains of the Halo coil. Both methods of analysis have shown that the Halo coil is able to 

improve the penetration depth compared to a standard circular coil used independently. 

This enables the stimulation of neural tissue at a greater depth than is presently 

achievable with existing coil designs. These results show promise for developing TMS 

for additional research and therapeutic applications. 

 

 

Figure 5.15. Calculated (a) magnetic and (b) electric field with Halo coil rotated +30 degrees, and (c) 

magnetic and (d) electric field with Halo coil rotated -30 degrees. 
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5.3 Stimulation depth and localization trade-off 

 

To stimulate neural tissue at depth a variety of coil designs have been studied and 

developed. Some coil designs that have been investigated are shown in Figure 5.16, with 

calculated induced electric field distributions. 

 

Figure 5.16. Calculated induced electric field in medial coronal plane of homogeneous SAM model for 

various coil designs. 

Localization of stimulation can be quantified as in (5.1), where shalf is the 

localization and tangential field spread, vhalf is the volume of neural tissue experiencing 

more than or equal to half the maximum electric field intensity, and dhalf is the depth to 

which at least half of the maximum electric field intensity reaches.  
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 shalf =
vhalf
dhalf

  (5.1) 

Plotting the dhalf and vhalf values of each coil reveals a stimulation depth and localization 

trade-off, as evident in Figure 5.17. Generally it can be stated that the greater the depth of 

stimulation possible, a larger volume of neural tissue will be stimulated. 

 

Figure 5.17. Electric field dhalf and vhalf values for a variety of proposed TMS coil designs, indicating 

electric field depth and localization trade-off. 

 

The figure demonstrates that these metrics reveal the novel Halo coil is capable of 

stimulating to a greater depth than the other coil designs but also stimulates a larger 

volume of tissue. Ideally, a new coil design would exhibit increased depth of stimulation 

with reduced volume of high field. 
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5.4 Coil design for animal subjects 

 

Coils typically used for stimulation of the human brain are very large compared to 

the dimensions of animals such as mice. The small volume of neural tissue in these 

animals has been shown to reduce the intensity of induced electric field obtainable with 

standard TMS equipment [4]. As a result, smaller TMS coils are usually employed for 

animal studies but there are limits to how small the coils can be made. The present study 

investigates the suitability of such a TMS coil for this purpose and determines if new 

animal-specific devices are needed. Results of this study are essential for designing 

experimental protocols for TMS studies utilizing animal subjects. 

It has been demonstrated that tissue heterogeneity and anisotropy of electrical 

conductivity have a profound effect upon the induced electric field in the brain during 

TMS [2], [5]. For modeling purposes, a high-resolution anatomically realistic adult 

mouse model has been obtained for this study. The mouse model is derived from 

structural MRI data of a male OF1 type mouse, of length 95 mm (excluding tail), 

weighing 35.5 g. The mouse model has been segmented into 50 distinct tissues for which 

electrical properties can be independently incorporated in similar fashion to the human 

anatomical models. Dielectric tissue parameters were obtained from the IT’IS database 

[6] which utilizes the work of Gabriel et al. [7]–[9]. This method can yield unusually 

high permittivity values at TMS frequencies but these have been shown to be an 

insignificant factor in the calculation of induced electric field for TMS [10]. 

The electromagnetic simulation incorporated a sinusoidal magnetic flux density of 

2.5 kHz and 100% power was assumed to correspond to a current of 7 kA passing 
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through the coil. A commercially available coil identified as being adequate for the 

stimulation of mice was obtained. The coil, a Magstim 25 mm figure-8 coil, is shown in 

Figure 5.18. The coil has an internal and external diameter of each winding of 12 and 43 

mm, respectively. The overall size of this coil is smaller than the TMS coils commonly 

used for stimulation of the human brain but still large compared to the animal subject 

size. Each winding of the coil contains 15 turns of copper wire with cross sectional area 5 

× 0.8 mm.  

 

Figure 5.18. Magstim 25 mm figure-8 coil, identified as suitable for small-animal studies. 

The calculations assume the coil is placed on the surface of the mouse head, 

centered above the brain. The peak field intensity calculated for the modeled coil, in a 

plane 10 mm from the coil surface, at 50% stimulator output was 5.36 × 105 A/m. This is 

higher than the calculated peak magnetic field generated by the TMS coils normally used 

for stimulation of the human brain [5]. 

Measurements of axial magnetic field were performed along the x-axis of the coil, 

at distances of 10 and 20 mm from the coil surface with a Gaussmeter and axial Hall 

probe. The measurements are shown together with calculations of the axial magnetic field 

in Figure 5.19.  
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Figure 5.19. Measurements and calculations of axial magnetic field of a Magstim 25 mm figure-8 coil, 

along coil surface (x-axis) and at distances of 10 and 20 mm.  

The maximum field intensity was found to be at the center of the windings, 

reaching approximately 1.35 × 106 A/m at the coil surface, reducing to approximately 0.5 

× 106 A/m at 10 mm, and to 0.2 × 106 A/m at 20 mm. The measured and calculated 

values show good agreement, particularly at the coil surface, in proximity to the mouse 

brain. Measurements of the axial magnetic field were also taken along the coil z-axis, 

through the center of the left coil winding. Again, the results show good agreement. The 

peak calculated field is greater than the measured value due to the coil windings being 

modeled as infinitely thin current loops, rather than a current distributed over a cross 

sectional area. The overall effect of this modeling simplification is not significant in 

regions where the mouse brain is located (> 0 mm on z-axis), as indicated in Figure 5.20. 

The coil surface is located at z = 0 mm. 
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Figure 5.20. Measurement and calculation of axial magnetic field along z-axis, through center of left coil 

winding. The coil surface against which the subject’s head is placed occurs at 0 mm on the z-axis. 

 

Regions where neighboring tissues have a large difference in electrical 

conductivity are expected to create rapid changes in the induced electric field at the 

boundary. The calculated induced electric field in the cerebral hemisphere in a coronal 

plane bisecting the cerebral hemisphere of the anatomical mouse brain, below the center 

of the coil is shown in Figure 5.21 (a). The induced electric field decays from 132 V/m at 

the top of the cerebral hemisphere to 43 V/m at the bottom, as indicated in Figure 5.21 

(b). Electric field values in the surrounding tissues are not indicated in order to emphasize 

the location of neural tissue. The highest value in the entire plane occurred at the air-skin 

interface, where the induced electric field has a magnitude of 150 V/m. 
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Figure 5.21. (a) Calculated induced electric field in coronal plane, bisecting the cerebral hemisphere of the 

anatomical mouse model, the modeled coil was positioned directly over the center of the cerebral 

hemisphere, and (b) electric field decay with depth in cerebral hemisphere. Electric field values in 

surrounding non-neural tissues are not plotted. 

The electric field in the sagittal plane of the anatomical mouse brain is shown in 

Figure 5.22 (a). The peak electric field value in this plane is 143 V/m. The calculated 

electric field in the central transverse plane of the anatomical mouse model is shown in 

Figure 5.22 (b), with peak electric field value of 97 V/m. The electric field results 

indicate that much of the cerebral hemisphere will be stimulated with the commercial coil 

when operated at 100% output.  
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Figure 5.22. (a) Calculated induced electric field in sagittal and (b) transverse planes, bisecting the cerebral 

hemisphere of the anatomical mouse model. 

The results highlight that it is difficult to achieve stimulation in only a small 

region in the brain with coils similar to the one utilized and modeled in this study. For 

this reason, novel coil designs must be created for this purpose. Studies for human 

subjects [11] have revealed that increased localization of stimulation is usually possible at 

the expense of depth of penetration. It is anticipated this will also be true for TMS coils 

designed for small animals. 
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CHAPTER VI 

RESULTS III: FORCES ON TMS COILS 

6.1 Background 

 

There has been a long-standing desire within the neural engineering community to 

combine a neuromodulation technique such as TMS with a neuroimaging technique such 

as functional magnetic resonance imaging (fMRI) [1]–[3]. Successfully combining these 

techniques would allow researchers to monitor the changes in brain activity during 

treatment and determine which regions have been stimulated. This capability would 

greatly improve our understanding of how TMS affects the brain and enhance the overall 

effectiveness of TMS in research and therapy. It would also experimentally solve the 

problem of determining the locus of stimulation during application. 

The force experienced by a TMS coil during typical operation can be very high 

due to the large transient magnetic fields TMS coils generate. This force is made evident 

by the loud audible clicking sound the coil produces when stressed, which can potentially 

be harmful to the hearing of a subject if ear protection is not used. The force becomes 

even greater when the coil is in the presence of a large external field like that produced 

by an MRI magnet. As a result, some attempts at performing TMS and fMRI 

concurrently have led to failure of the coil. This is particularly problematic when high 

frequency TMS protocols are used, which are now capable of being utilized with a 

repetitive stimulation frequency of 100 Hz or more.  

In this chapter the problem of forces on TMS coils is addressed. Combining TMS 

and fMRI also causes additional problems, principally artifacts in the resulting fMRI 
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image due to the presence of the TMS coil. This problem has been studied and mitigated 

to some extent by practice of an ‘interleaved’ procedure [4]–[6]. 

 

6.2 Numerical calculation of Lorentz forces on TMS coils 

 

To understand how the presence of an external magnetic field affects the forces 

on a TMS coil, the forces that arise during normal operation with no external field will 

first be calculated. Once these forces have been established the calculation will then 

account for a large externally applied field of 3 T, comparable to that of a typical research 

MRI scanner. The changes in the forces on the coil will then be compared. The results of 

this investigation will allow inferences about safe operating levels and potential 

modifications to TMS coil construction to be made. 

In this study, calculation of the fields generated by a TMS coil have been 

performed using finite element analysis software COMSOL Multiphysics 4.2a 

(COMSOL Inc., Burlington, MA, USA). Coils used for TMS are usually built from thick, 

rectangular cross-sectioned wire, concentrically wound to form a flat coil. In this study a 

typical figure-8 coil [7] has been modeled, similar to those widely used in research. The 

static currents and fields are considered such that the magnetic vector potential A satisfies 

equation (6.1), 

  ∇× (µ−1∇×
!
A) =

!
J e   (6.1) 

where Je denotes an applied current density. The relationship between the fields and 

potentials are described by (6.2) and (6.3) [8]. 

  
!
B = ∇×

!
A   (6.2) 
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!
H = µ−1 !B   (6.3) 

The current density of the wire was calculated by considering 9 turns of wire 

carrying 5 kA with an excitation frequency of 2.5 kHz. The cross sectional area of the 

wire was assumed to be 6 × 2 mm and the volume Lorentz force density was calculated 

by (6.4). 

  
!
f =
!
J × (
!
Bcoil +

!
Bmri )   (6.4) 

The torque at the center of each winding was calculated as in (6.5), 

 
 
!
τ = !r ×

!
f dV∫   (6.5) 

where r is a vector pointing from the center of each coil winding to the corresponding 

Lorentz force density f. 

Three different orientations of the applied field relative to the modeled figure-8 

TMS coil have been considered. First, the external field is applied along the unique y-

axis, such that it is perpendicular to the plane of the coil. Second, the external field is 

applied in the plane of the coil, perpendicular to the unique axis, where the field is 

aligned with the x-axis or length of the coil, such that it is parallel to a line connecting the 

center of the two coil windings. Third, the field is applied in the plane of the coil and 

aligned parallel to the z-axis or the width of the coil, which is perpendicular to a line 

connecting the center of the two coil windings. Each orientation is indicated in each case 

in Figures 6.2, 6.3, and 6.4. 

Magnetic field characterization was completed to ensure the results of the 

magnetic field calculations correspond to measurements of the modeled coil. Axial 

magnetic field measurements were performed on a Magstim D70 (R) figure-8 coil. This 

coil is the basis for the model used in the following calculations. A Gaussmeter and axial 
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Hall probe with an active area of 0.46 mm2, supported by a multi-axis linear stage with a 

movement precision of 0.6 µm was used to measure the magnetic field, which closely 

mirrored the calculated values. The figure-8 coil was energized with a Magstim Rapid2 

biphasic stimulator (The Magstim Company Ltd., Whitland, Wales, United Kingdom), 

with measured pulse duration of 400 µs.  

The magnetic flux density distribution in the coil plane, caused by the current in 

the coil alone is shown in Figure 6.1 (a). The peak field intensity in the coil plane is 

approximately 1.9 T. The peak magnitude of the Lorentz force density when no external 

field is applied, the ‘self force,’ is approximately 7.3 × 108 N/m3. The direction the 

Lorentz forces act in are shown in Figure 6.1 (b). It is known that the magnitude and 

direction of these forces do not cause mechanical failure of the coil. 

The consequence of an applied field can now be investigated. First, the effect of 

orienting the applied 3 T field perpendicular to the modeled TMS coil was examined. In 

this case, the applied field was aligned with the y-axis of the coil model. The magnetic 

flux density distribution in the coil plane is shown in Figure 6.2 (a).  It was observed that 

the peak field intensity present in the coil plane increased to approximately 4.9 T. The 

peak magnitude of the Lorentz force density was found to be approximately 1.85 × 109 

N/m3. This increase is significant when compared with the peak value of 7.3 × 108 N/m3 

calculated for the coil during normal operation, without an applied field. The directions in 

which the Lorentz forces act are indicated in Figure 6.2 (b). In this case, it is apparent the 

forces act in the coil plane. It can be observed that the Lorentz forces act inward or 

outward, radially, depending on the direction of current flow in the coil. The radial force 
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is higher when the magnetic field produced by the coil winding is in the same direction as 

the applied field. In Figure 6.2 (b), this is observed in the winding on the right. 

The external field can be applied parallel to the coil plane in two different ways. 

First, the effect of the applied field oriented parallel to a line joining the centers of the 

two coil windings is considered. In this case, the field is oriented along the x-axis of the 

coil model, as indicated in Figure 6.3. The magnetic flux density distribution in the coil 

plane in this instance is shown in Figure 6.3 (a). It is observed that the peak magnetic flux 

density in the coil plane is approximately 3.6 T. This is considerably less than when the 

field is applied perpendicular to the coil plane, where a peak magnetic flux density of 

approximately 4.9 T was calculated. The peak magnitude of the Lorentz force density in 

this case is found to be 1.34 × 109 N/m3, again lower than the previous case. The 

directions in which the Lorentz forces act are indicated in Figure 6.3 (b). For this 

orientation, the Lorentz forces act perpendicular to the coil plane, resulting in a flexural 

force about the mid point of the coil, where the two windings meet. 

The applied field can also act parallel to the width of the TMS coil. In this case 

the applied field is oriented along the z-axis of the coil model as shown in Figure 6.4. The 

magnetic flux density distribution in the coil plane in this case is shown in Figure 6.4 (a). 

The peak magnetic flux density in the coil plane is calculated to be approximately 3.6 T. 

The peak magnitude of the Lorentz force in the coil when the external field is applied 

parallel to the model z-axis is calculated to be approximately 1.32 × 109 N/m3. The 

directions in which the Lorentz forces act are indicated in Figure 6.4 (b). For this 

orientation of the applied field, the forces are found to act perpendicular to the coil plane, 

which results in a torsional force about the mid point of the coil. 
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Figure 6.1. (a) Magnetic flux density inside modeled figure-8 coil with no external field applied and (b) 

resultant Lorentz forces on modeled figure-8 coil, arrows indicate direction of force. 

 

Figure 6.2. (a) Magnetic flux density inside modeled figure-8 coil with 3 T external field applied along the 

model y-axis, perpendicular to coil plane and (b) resultant Lorentz forces producing radial forces in the coil 

plane, arrows indicate direction of force. 
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Figure 6.3. (a) Magnetic flux density inside modeled figure-8 coil with 3 T external field applied along the 

model x-axis, parallel to the coil plane and (b) resultant Lorentz forces producing a flexural force about the 

coil center, arrows indicate direction of force. 

 

Figure 6.4. (a) Magnetic flux density inside modeled figure-8 coil with 3 T external field applied along the 

model z-axis, parallel to the coil plane and (b) resultant Lorentz forces producing a torsion force about the 

coil center, arrows indicate direction of force. 
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The forces experienced by the modeled TMS coil can be expressed as a torque 

calculated at the center of the coil windings. The following torque values have been 

calculated by (6.5) and are shown in Table 6.1. It is evident that when the applied field 

acts parallel to the coil plane, large counteracting torques are experienced, of 

approximately 610 Nm. 

Table 6.1. Torque values for three orientations of applied magnetic field, perpendicular (By), and parallel 

(Bx and Bz) to the modeled coil plane. 

 τx (Nm) τy (Nm) τz (Nm) 

By (perpendicular)    

Right turn 3 × 10-3 -8 × 10-6 3 × 10-3 

Left turn 4 × 10-3 9 × 10-7 4 × 10-3 

Bx (parallel)    

Right turn 3 × 10-3 -5 × 10-6 -610.54 

Left turn 4 × 10-3 -3 × 10-6 610.54 

Bz (parallel)    

Right turn 610.55 -4 × 10-6 3 × 10-3 

Left turn -610.54 -2 × 10-6 4 × 10-3 

 

The Lorentz forces experienced by the coil have been determined for normal 

operation and for three orientations of an applied 3 T field, such as the main field 

produced by an MRI magnet. The results indicate that under usual operating 

circumstances, the Lorentz force density on a TMS coil can exceed 7.3 × 108 N/m3. The 

addition of a large applied field causes the Lorentz force density to increase to 1.85 × 109 

N/m3. The torque experienced at the center of the coil windings has also been calculated 
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and can exceed 600 Nm. The nature of the force experienced by the TMS coil depends on 

the direction of the applied field, relative to the orientation of the coil. 

The findings of this study indicate the nature of the forces that act upon the coil 

must be considered, as the orientation of the coil relative to the applied field has an effect 

on the peak Lorentz force density generated. It is possible that shielding of the coil may 

reduce the forces generated but this is likely to make stimulation of neural tissue difficult.  

 

6.3 Realistic coil modeling and calculation of stress 

 

The preceding section indicated that the forces that act upon a TMS coil increase 

significantly with the addition of an externally applied field. To gain a greater 

understanding of these forces a geometrically realistic coil model must be used. In 

addition to calculating the Lorentz force density f inside the coil by (6.6), 

  
!
f =
!
J ×
!
B   (6.6) 

where J is the current density and B is the magnetic flux density, we can also calculate 

stress inside the coil. This requires the components of the Maxwell stress tensor Ti,j to be 

calculated by (6.7) [9], 

 
  
Ti, j = ε0 Ei E j −

1
2
δ i, j E

2⎛
⎝⎜

⎞
⎠⎟
+ 1
µ0

Bi Bj −
1
2
δ i, j B

2⎛
⎝⎜

⎞
⎠⎟

  (6.7) 

where ε0 and µ0 are the relative permittivity and permeability, respectively, and δi,j is the 

Kronecker delta, which is equal to one if i = j. In this case the stress tensor depends only 

on a component of the electromagnetic field as no external mechanical stress or 

deformation is applied to the coil. Therefore, the mechanical part can be assumed to be 
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zero.  Using the Maxwell stress tensor, the von Mises stress can be calculated as in (6.8) 

[10]. 

 
  
σ v =

1
2

(Txx −Tyy )2 + (Tyy −Tzz )2 + (Tzz −Txx )2⎡⎣ ⎤⎦ + 3 Txy
2 +Txz

2 +Tyz
2⎡⎣ ⎤⎦   (6.8) 

To investigate the influence of skin effect and the overall change in magnetic flux 

density in the coil when considering the problem in an AC case as opposed to the DC 

case, an initial two-dimensional axisymmetric simulation has been performed. These 

calculations assume a current of 5 kA in the simulated copper medium having electrical 

conductivity 5.998 × 107 S/m, and a surrounding air region with electrical 

conductivity 0 S/m. The AC case assumed an excitation frequency of 2.5 kHz. The 

modeled coil consisted of nine turns with inner and outer radii of 32 and 48 mm, 

respectively. The separation between windings to account for an air gap and insulation 

was 1 mm. A cross-sectional area of 1 × 5 mm was assumed for the wire. The underlying 

rotational symmetry of this model allows a very fine mesh to be applied to the model.  As 

anticipated, in the AC case it was found that the skin effect has an effect on the overall 

current distribution inside the coil windings however, the majority of the coil cross 

section has an instantaneous current density of approximately 1 × 109 A/m2. This 

corresponds to the current density found in the DC case. The resulting magnetic flux 

density in both cases is shown in Figure 6.5, demonstrating an almost identical profile. 

These results indicate that the calculation can be modeled in the DC case as this greatly 

reduces the computational requirements of the simulation for the realistic three-

dimensional coil model. 
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Figure 6.5. Axisymmetric simulation of magnetic flux density produced by modeled circular TMS coil in 

(a) DC and (b) AC case, resulting in almost identical results. 

A figure-8 TMS coil was modeled with SolidWorks 2011 (SolidWorks Corp., 

Waltham, MA, USA) based on x-ray images of the commercially available Magstim D70 

(R) figure-8 coil, shown in Figure 6.6. All calculations were performed with COMSOL 

Multiphysics 4.2a (COMSOL, Inc., Burlington, MA, USA) with an assumed current of 

5 kA flowing in the copper wire with electrical conductivity 5.998 × 107 S/m. 



www.manaraa.com

 

	  

113 

Again, the effect of an externally applied field has been considered in a number of 

orientations relative to the modeled coil. First, the forces and stress generated without an 

applied field are investigated. The magnetic flux density distribution in the coil plane, as 

a result of only the current in the coil is shown in Figure 6.7 (a). The peak field intensity 

in the coil plane is approximately 2.3 T. The peak magnitude of the Lorentz force density 

in the coil when no external field is applied was found to be 2.8 × 109 N/m3. The 

directions in which the Lorentz forces act are indicated in Figure 6.7 (b). The peak von 

Mises stress in this case was found to be approximately 4.3 × 106 Pa, as indicated in 

Figure 6.7 (c). The largest von Mises stresses are located in the inner-most turn of the coil 

windings. 

 

 

Figure 6.6. Geometrically realistic three-dimensional figure-8 coil model developed in SolidWorks 2011, 

with use of x-ray images of a commercial TMS coil. 
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Figure 6.7. (a) Magnetic flux density inside realistically modeled figure-8 coil with no external magnetic 

field applied, (b) resultant Lorentz force density, and (c) von Mises stresses. 

The effect of orienting the applied field perpendicular to the realistically modeled 

TMS coil will be considered first. The external field in this case is aligned with the 

unique z-axis of the coil model as indicated in Figure 6.8. The magnetic flux density 

distribution in the coil plane is shown in Figure 6.8 (a). The peak field intensity 

calculated in this case has increased to approximately 5.3 T. The peak amplitude of the 

Lorentz force density in the coil when the external field is applied perpendicular to the 

coil plane was found to be approximately 6.4 × 109 N/m3. The Lorentz force density has 

more than doubled due to the external field in this case. The directions in which the  
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Figure 6.8. (a) Magnetic flux density inside realistically modeled figure-8 coil with 3 T external field 

applied along the model z-axis, perpendicular to the coil plane and (b) resultant Lorentz force density 

producing radial forces in the coil plane and (c) von Mises stresses. 

Lorentz forces act are indicated in Figure 6.8 (b). In this scenario, the Lorentz forces act 

in the coil plane, radially inward or outward, depending on the direction of current flow 

in the modeled coil. The peak von Mises stress was found to be approximately 

2.3 × 107 Pa as indicated in Figure 6.8 (c). The largest von Mises stresses were located in 

either the inner-most turn of the coil windings or the outermost, depending on the 

direction of the Lorentz forces. 
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Figure 6.9. (a) Magnetic flux density inside realistically modeled figure-8 coil with 3 T external field 

applied along the model x-axis, parallel to the coil plane and (b) resultant Lorentz force density producing a 

flexural force about the coil center and (c) von Mises stresses. 

As before, the applied field can be oriented parallel to the coil plane in two 

distinct ways. First, the effect of the applied field operating parallel to the line joining the 

centers of the two windings is investigated. In this case the field is oriented along the x-

axis of the coil model as shown in Figure 6.9. The magnetic flux density distribution in 

the coil plane in this case is shown in Figure 6.9 (a). The peak magnetic flux density in 

the coil plane is approximately 4.4 T. This is significantly lower than in the magnetic flux  
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Figure 6.10. (a) Magnetic flux density inside realistically modeled figure-8 coil with 3 T external field 

applied along the model y-axis, parallel to the coil plane and (b) resultant Lorentz force density producing a 

torsional force about the coil center and (c) von Mises stresses. 

density found when the field is applied perpendicular to the coil plane, where a peak 

magnetic flux density of approximately 5.3 T was calculated. The peak Lorentz force 

density is calculated to be 4.0 × 109 N/m3, also lower than the previous case.  The 

directions in which the Lorentz forces act are indicated in Figure 6.9 (b). In this case, the 

Lorentz forces create a flexural force about the mid point of the coil. The largest von 

Mises stress is approximately 1.6 × 107 Pa with higher stresses generally found in the top 
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or bottom surface of the coil, depending on which direction the current flows in the coil, 

relative to the model x-axis as indicated in in Figure 6.9 (c). 

Lastly, the applied field is oriented parallel to the width of the modeled TMS coil, 

so that the applied field is oriented along the y-axis of the coil model as indicated in 

Figure 6.10. The magnetic flux density distribution in the coil plane in this shown in 

Figure 6.10 (a). The peak magnetic flux density in the coil plane is found to be 

approximately 3.9 T. The peak Lorentz force density calculated in this case is 

approximately 4.0 × 109 N/m3. The directions in which the Lorentz forces act are 

indicated in Figure 6.10 (b). In this scenario, the Lorentz forces are found to act 

perpendicular to the coil plane, resulting in a torsional force about the center of the coil. 

The largest von Mises stress calculated is approximately 1.5 × 107 Pa, with high stresses 

generally occurring on the top or bottom surface of the coil, depending on the direction of 

the current flow, relative to the model x-axis, as indicated in Figure 6.10 (c). 

The peak magnitude of the calculated Lorentz forces in all instances is below the 

70 MPa yield strength of copper, therefore, it is not anticipated that the coil will 

plastically deform or fracture. However, the TMS coil casing should be selected such that 

it should have yield strength greater than 23 MPa. As the coil can potentially experience 

large elastic deformation, low cycle fatigue should be considered as this may have the 

potential to lead to coil failure. The peak calculated magnetic flux density and Lorentz 

force density found in this study and the earlier study utilizing simplified coil geometry is 

given in Table 6.2. As values of von Mises stress were not calculated in the prior study 

with simplified geometry, they cannot be compared to the realistic geometry. 
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The results of this study show that under typical conditions the peak Lorentz force 

density in a TMS coil can exceed 2.8 × 109 N/m3. The addition of an applied 3 T field can 

increase the Lorentz force density to more than 6.4 × 109 N/m3. The realistically modeled 

coil indicates that the peak Lorentz force density is more than three times larger than had 

previously been calculated with a simplified coil geometry. The maximum Lorentz force 

density calculated with the simplified model, in the presence of a 3 T applied field was 

1.9 × 109 N/m3, much less than the stresses calculated using the realistic model. The 

maximum von Mises stress encountered with an applied 3 T field is 2.3 × 107 Pa.  

The methodology and results of this study can be used in the implementation of 

combined TMS/fMRI systems by increasing the understanding of how the devices 

interact and what the actual forces are. The results can also be used in future development 

of novel TMS coils to prevent mechanical failure in extreme conditions. 

 

Table 6.2. Peak calculated magnetic flux density and Lorentz force for orientations of applied field. 

 Simplified Geometry Realistic Geometry 

 
Max Magnetic 

Flux Density (T) 

Max Lorentz 

Force (Nm-3) 

Max Magnetic 

Flux Density (T) 

Max Lorentz 

Force (Nm-3) 

B0 1.9 7.26 × 108 2.3 2.80 × 109 

Bx 3.6 1.34 × 109 4.4 4.00 × 109 

By 3.6 1.32 × 109 3.9 4.98 × 109 

Bz 4.9 1.85 × 109 5.3 6.42 × 109 
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CHAPTER VII 

CONCLUSIONS 

7.1 Anatomically realistic human head modeling 

 

The impact of human head model complexity on accurate determination of the 

locus of neural stimulation during TMS has been studied. Numerical methods have been 

utilized, supported by empirical measurements, to demonstrate that tissue heterogeneity 

has a significant effect on the distribution of electric field induced in the brain during 

TMS. It has been proven that simplified human head models are inadequate for accurate 

determination of induced electric field, particularly at depth in the brain.  

The inhomogeneous head models have demonstrated that significant spatial 

variation of the induced electric field can occur between subjects, as the physical 

characteristics each brain is different, particularly with age. The consequence of this 

discovery is that a particular TMS coil may not be able to accurately stimulate the same 

brain region for different patients. These results also highlight the value of 

neuronavigation in TMS trials, to ensure the desired cortical target has the maximum 

likelihood of being stimulated. 

 

7.2 Coil design for transcranial magnetic stimulation 

 

One of the main challenges in TMS is developing the ability to stimulate neural 

tissue at depth in the brain. Currently this requires invasive surgery and implantation of 

DBS electrodes. Replacing this procedure with a non-invasive, magnetic therapy would 
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provide significant benefits, reducing the cost and eliminating the risks associated with 

surgery. 

The design of existing TMS coils have been investigated and quantitatively 

compared. The results of this analysis revealed that a trade-off exists between the depth 

and localization of stimulation and that it is not presently possible to stimulate brain 

tissue at depth without stimulating the overlying brain regions. 

A novel coil design, the ‘Halo’ coil, has been proposed and demonstrated as an 

improved penetration depth over standard TMS coils through calculations and magnetic 

field measurements. The Halo coil is significantly different from standard TMS coils 

designs as it makes use of multiple coils, requiring two magnetic stimulators to operate. 

The Halo coil is also large enough to place over a subject’s head, creating new 

stimulation possibilities. The results show promise for expanding the implementation and 

development of TMS for diagnostic and therapeutic applications as it provides substantial 

advantages over alternative invasive methods of stimulating neural tissue at depth in the 

brain.  

 

7.3 Forces on transcranial magnetic stimulation coils 

 

The forces generated when combining TMS with neuroimaging techniques such 

as fMRI have been investigated. The magnetic flux density, Lorentz force density, and 

von Mises stress experienced by a commercial figure-8 TMS coil have been calculated 

during normal operation and when in the presence of a 3 T external field, such as can be 

found in an fMRI scanner. Accurate geometrical modeling of the device demonstrated 
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that an externally applied 3 T field can increase the Lorentz force density by a factor of 

more than 3 times higher than had previously been established. The results of this study 

have implications for the development of combined TMS/fMRI systems and in the 

development of new TMS coil designs and construction methods to ensure mechanical 

failure does not occur.  
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CHAPTER VIII 

FUTURE WORK 

8.1 Advanced modeling of transcranial magnetic stimulation,  

future devices and applications 

 

 Much of the work described in this thesis makes use of the best available 

dielectric tissue property database. Many of the sources in this database are results of 

measurements performed at significantly higher frequencies than applies to TMS and 

many have been conducted on tissue from small animals. To ensure the validity of these 

values, dielectric tissue property measurements should be conducted specifically for use 

in TMS on the most suitable tissue to emulate the properties of living human tissue. 

Additionally, the effect of various neurological disorders on the tissue properties of the 

brain should be investigated so that accurate modeling of unhealthy patients can be 

achieved. 

 The work that has been presented on anatomically realistic human head modeling 

makes significant advances over other TMS studies that make use of simplified human 

head models. However, there are still ways in which these models could be improved. 

Consideration of anisotropic materials in the head, particularly the white matter, would 

improve accurate determination of induced fields in the brain. This will become 

increasingly important as advances in deep TMS are made. Incorporation of diffusion 

tensor imaging (DTI) data could also potentially model the connectivity of the brain and 

enable modeling of how neural stimulation propagates through the brain after the initial 

stimulation. 
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The results of anatomically realistic human head modeling have demonstrated the 

extent to which induced fields can vary between patients and depend upon coil 

positioning. Existing neuronavigation systems allow a TMS practitioner to target a 

particular region of the cortex by seeing where the coil is located relative to the subject’s 

structural MRI data and ensure coil position is repeatable. However, these systems 

assume stimulation will occur directly beneath the coil center with no indication of how 

the stimulating field will be induced in the brain. Incorporating the modeling techniques 

demonstrated in this thesis will allow the practitioner to see how the induced field will be 

distributed in the head. As a result, the distribution of the induced field will be indicated 

to the user and offers scope for improvement to stimulation by suggesting better 

positioning of the coils. A challenge of this proposed system will be the computational 

time required to model the induced field during use. High-resolution modeling can take 

hours to compute while low-resolution modeling may not identify important features of 

the induced field. One possible solution to this problem would be to compute the induced 

field with the subject’s MRI data for various coil positions prior to use and indicate the 

most relevant result during treatment. 

 Continued development of novel TMS devices will enable new applications of the 

technique to be established. Advances and improvements in the stimulation depth 

achievable with TMS may ultimately enable it to replace invasive neuromodulation 

methods such as DBS, which is currently used for the treatment of the motor symptoms 

of Parkinson’s disease. Future studies of TMS may reveal utility in treatment of 

additional neurological disorders and injuries such concussion, traumatic brain injury and 

chronic traumatic encephalopathy. 
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APPENDIX A 

DIELECTRIC TISSUE PROPERTIES 
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Low Frequency Electrical Conductivity Values (S/m) 

Tissue Average Standard Deviation Number of Values Min Max Direction 

Cerebellum 1.21 0.10 2 1.12 1.31 Along 

Cerebellum 0.31 0.09 2 0.22 0.40 Across 

Cerebellum 0.58 0.36 7 0.10 1.31 Mixed 

Brain (White Matter) 0.80 0.33 2 0.47 1.12 Along 

Brain (White Matter) 0.10 0.02 2 0.08 0.12 Across 

Brain (White Matter) 0.37 0.34 5 0.05 1.12 Mixed 

Brain (Grey Matter) 0.26 0 1 0.26 0.26 Along 

Brain (Grey Matter) 0.20 0 1 0.20 0.20 Across 

Brain (Grey Matter) 0.19 1 4 0.08 0.26 Mixed 

Liver 0.09 0.03 4 0.04 0.14 
 

Heart Muscle 0.39 0.00 1 0.39 0.39 Along 

Heart Muscle 0.18 0.00 1 0.18 0.18 Across 

Heart Muscle 0.29 0.13 5 0.08 0.48 Mixed 

Bone 0.17 0 1 0.17 0.17 Along 

Bone 0.10 1 2 0.02 1.17 Mixed 

Skin  (Dry) 0.000125 0.000075 2 0.00005 0.000 
 

Skin (Wet) 0.001215 0.000785 2 0.00043 0.002 
 

Cerebrospinal Fluid 1.80 0.21 2 1.59 2.00 
 

Blood 0.65 0.05 2 0.60 0.70 
 

Urine 1.71 0.16 2 1.55 1.87 
 

Lung (Inflated) 0.06 0.01 2 0.04 0.07 
 

Lung (Deflated) 0.16 0.05 2 0.11 0.21  
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Muscle 0.13 0.06 3 0.04 0.19 Along 

Muscle 0.41 0.13 4 0.15 0.60 Across 

Muscle 0.29 0.18 7 0.04 0.60 Mixed 

Fat 0.05 0.03 2 0.02 0.078 
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Dielectric Properties 

Tissue ef del1 tau1 (ps) alf1 del2 tau2 (ns) alf2 sig del3 tau3 (µs) alf3 del4 tau4 (ms) alf4 Source 

Adrenal Gland 4 55 7.958 0.1 2500 159.155 0.1 0.5 100000 159.155 0.2 40000000 15.915 0 Thyroid gland 

Air 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Air 

Bile 4 66 7.579 0.05 50 1.592 0 1.4 0 159.155 0.2 0 15.915 0.2 Bile 

Blood 4 56 8.377 0.1 5200 132.629 0.1 0.7 0 159.155 0.2 0 15.915 0 Blood 

Blood Vessel Wall 4 40 8.842 0.1 50 3.183 0.1 0.25 100000 159.155 0.2 10000000 1.592 0 Aorta Wall 

Bone 2.5 10 13.263 0.2 180 79.577 0.2 0.02 5000 159.155 0.2 100000 15.915 0 Bone (Cortical) 

Bone (Cancellous) 2.5 18 13.263 0.22 300 79.577 0.25 0.07 20000 159.155 0.2 20000000 15.915 0 Bone (Cancellous) 

Bone (Cortical) 2.5 10 13.263 0.2 180 79.577 0.2 0.02 5000 159.155 0.2 100000 15.915 0 Bone (Cortical) 

Bone Marrow (Red) 2.5 9 14.469 0.2 80 15.915 0.1 0.1 10000 1591.549 0.1 2000000 15.915 0.1 Bone Marrow (Red) 

Bone Marrow (Yellow) 2.5 3 7.958 0.2 25 15.915 0.1 0.001 5000 1591.549 0.1 2000000 15.915 0.1 Bone Marrow (Yellow) 

Brain 4 40 7.958 0.1 700 15.915 0.15 0.04 200000 106.103 0.22 45000000 5.305 0 Cerebellum 

Brain (Grey Matter) 4 45 7.958 0.1 400 15.915 0.15 0.02 200000 106.103 0.22 45000000 5.305 0 Brain (Grey Matter) 

Brain (White Matter) 4 32 7.958 0.1 100 7.958 0.1 0.02 40000 53.052 0.3 35000000 7.958 0.02 Brain (White Matter) 

Breast Fat 2.5 3 17.68 0.1 15 63.66 0.1 0.01 50000 454.7 0.1 20000000 13.26 0 Breast Fat 

Breast Gland 4 55 7.958 0.1 2500 159.155 0.1 0.5 100000 159.155 0.2 40000000 15.915 0 Thyroid gland 

Bronchi 2.5 38 7.958 0.1 400 63.662 0.1 0.3 50000 15.915 0.2 1000000 15.915 0 Trachea 

Bronchi lumen 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Bronchi lumen 

Cartilage 4 38 13.263 0.15 2500 144.686 0.15 0.15 100000 318.31 0.1 40000000 15.915 0 Cartilage 

Cerebellum 4 40 7.958 0.1 700 15.915 0.15 0.04 200000 106.103 0.22 45000000 5.305 0 Cerebellum 

Cerebrospinal Fluid 4 65 7.958 0.1 40 1.592 0 2 0 159.155 0 0 15.915 0 Cerebrospinal Fluid 

Cervix 4 45 7.958 0.1 200 15.915 0.1 0.3 150000 106.103 0.18 40000000 1.592 0 Cervix 

Commissura Anterior 4 32 7.958 0.1 100 7.958 0.1 0.02 40000 53.052 0.3 35000000 7.958 0.02 Brain (White Matter) 
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Commissura Posterior 4 32 7.958 0.1 100 7.958 0.1 0.02 40000 53.052 0.3 35000000 7.958 0.02 Brain (White Matter) 

Connective Tissue 4 42 12.243 0.1 60 6.366 0.1 0.25 60000 318.31 0.22 20000000 1.326 0 Tendon\Ligament 

Diaphragm 4 50 7.234 0.1 7000 353.678 0.1 0.2 1200000 318.31 0.1 25000000 2.274 0 Muscles 

Ductus Deferens 4 40 8.842 0.1 50 3.183 0.1 0.25 100000 159.155 0.2 10000000 1.592 0 Aorta Wall 

Dura 4 40 7.958 0.15 200 7.958 0.1 0.5 10000 159.155 0.2 1000000 15.915 0 Dura 

Epididymis 4 55 7.958 0.1 5000 159.155 0.1 0.4 100000 159.155 0.2 40000000 15.915 0 Testis 

Esophagus 4 60 7.958 0.1 2000 79.577 0.1 0.5 100000 159.155 0.2 40000000 15.915 0 Stomach 

Esophagus Lumen 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Esophagus Lumen 

Eye (Cornea) 4 48 7.958 0.1 4000 159.155 0.05 0.4 100000 15.915 0.2 40000000 15.915 0 Eye (Cornea) 

Eye (Lens) 3 32 8.842 0.1 100 10.61 0.2 0.2 1000 15.915 0.2 5000 15.915 0 Eye (Lens) 

Eye (Sclera) 4 50 7.958 0.1 4000 159.155 0.1 0.5 100000 159.155 0.2 5000000 15.915 0 Eye (Sclera) 

Eye (Vitrous Humor) 4 65 7.234 0 30 159.155 0.1 1.5 0 159.155 0 0 15.915 0 Eye (Vitrous Humor) 

Eye Lens (Cortex) 4 42 7.958 0.1 1500 79.577 0.1 0.3 200000 159.155 0.1 40000000 15.915 0 Eye Lens (Cortex) 

Eye Lens (Nucleus) 3 32 8.842 0.1 100 10.61 0.2 0.2 1000 15.915 0.2 5000 15.915 0 Eye (Lens) 

Fat 2.5 9 7.958 0.2 35 15.915 0.1 0.035 33000 159.155 0.05 10000000 15.915 0.01 Fat (Average Infiltrated) 

Fat (Average Infiltrated) 2.5 9 7.958 0.2 35 15.915 0.1 0.035 33000 159.155 0.05 10000000 15.915 0.01 Fat (Average Infiltrated) 

Fat (Not Infiltrated) 2.5 3 7.958 0.2 15 15.915 0.1 0.01 33000 159.155 0.05 10000000 7.958 0.01 Fat (Not Infiltrated) 

Gallbladder 4 55 7.579 0.05 40 1.592 0 0.9 1000 159.155 0.2 10000 15.915 0 Gallbladder 

Heart Lumen 4 56 8.377 0.1 5200 132.629 0.1 0.7 0 159.155 0.2 0 15.915 0 Blood 

Heart Muscle 4 50 7.958 0.1 1200 159.155 0.05 0.05 450000 72.343 0.22 25000000 4.547 0 Heart Muscle 

Hippocampus 4 45 7.958 0.1 400 15.915 0.15 0.02 200000 106.103 0.22 45000000 5.305 0 Brain (Grey matter) 

Hypophysis 4 55 7.958 0.1 2500 159.155 0.1 0.5 100000 159.155 0.2 40000000 15.915 0 Thyroid gland 

Hypothalamus 4 55 7.958 0.1 2500 159.155 0.1 0.5 100000 159.155 0.2 40000000 15.915 0 Thyroid gland 

Intervertebral Disc 4 38 13.263 0.15 2500 144.686 0.15 0.15 100000 318.31 0.1 40000000 15.915 0 Cartilage 
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Kidney 4 47 7.958 0.1 3500 198.944 0.22 0.05 250000 79.577 0.22 30000000 4.547 0 Kidney 

Kidney (Cortex) 4 47 7.958 0.1 3500 198.944 0.22 0.05 250000 79.577 0.22 30000000 4.547 0 Kidney 

Kidney (Medulla) 4 47 7.958 0.1 3500 198.944 0.22 0.05 250000 79.577 0.22 30000000 4.547 0 Kidney 

Large Intestine 4 50 7.958 0.1 3000 159.155 0.2 0.01 100000 159.155 0.2 40000000 1.592 0 Large Intestine 

Large Intestine Lumen 4 50 7.234 0.1 7000 353.678 0.1 0.2 1200000 318.31 0.1 25000000 2.274 0 Muscles 

Larynx 4 38 13.263 0.15 2500 144.686 0.15 0.15 100000 318.31 0.1 40000000 15.915 0 Cartilage 

Liver 4 39 8.842 0.1 6000 530.516 0.2 0.02 50000 22.736 0.2 30000000 15.915 0.05 Liver 

Lung 2.5 18 7.958 0.1 500 63.662 0.1 0.03 250000 159.155 0.2 40000000 7.958 0 Lung 

Lung (Deflated) 4 45 7.958 0.1 1000 159.155 0.1 0.2 500000 159.155 0.2 10000000 15.915 0 Lung (Deflated) 

Lung (Inflated) 2.5 18 7.958 0.1 500 63.662 0.1 0.03 250000 159.155 0.2 40000000 7.958 0 Lung (Inflated) 

Lymphnode 4 55 7.958 0.1 2500 159.155 0.1 0.5 100000 159.155 0.2 40000000 15.915 0 Thyroid gland 

Mandible 2.5 10 13.263 0.2 180 79.577 0.2 0.02 5000 159.155 0.2 100000 15.915 0 Bone (Cortical) 

Medulla Oblongata 4 40 7.958 0.1 700 15.915 0.15 0.04 200000 106.103 0.22 45000000 5.305 0 Cerebellum 

Meniscus 4 38 13.263 0.15 2500 144.686 0.15 0.15 100000 318.31 0.1 40000000 15.915 0 Cartilage 

Midbrain 4 40 7.958 0.1 700 15.915 0.15 0.04 200000 106.103 0.22 45000000 5.305 0 Cerebellum 

Mucous Membrane 4 50 7.234 0.1 7000 353.678 0.1 0.2 1200000 318.31 0.1 25000000 2.274 0 Muscles 

Muscle 4 50 7.234 0.1 7000 353.678 0.1 0.2 1200000 318.31 0.1 25000000 2.274 0 Muscles 

Nerve 4 26 7.958 0.1 500 106.103 0.15 0.006 70000 15.915 0.2 40000000 15.915 0 Nerve 

Ovary 4 40 8.842 0.15 400 15.915 0.25 0.3 100000 159.155 0.27 40000000 15.915 0 Ovary 

Pancreas 4 55 7.958 0.1 2500 159.155 0.1 0.5 100000 159.155 0.2 40000000 15.915 0 Thyroid gland 

Patella 2.5 10 13.263 0.2 180 79.577 0.2 0.02 5000 159.155 0.2 100000 15.915 0 Bone (Cortical) 

Penis 4 40 8.842 0.1 50 3.183 0.1 0.25 100000 159.155 0.2 10000000 1.592 0 Aorta Wall 

Pharynx 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Pharynx 

Pineal Body 4 55 7.958 0.1 2500 159.155 0.1 0.5 100000 159.155 0.2 40000000 15.915 0 Thyroid gland 
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Placenta 4 56 8.377 0.1 5200 132.629 0.1 0.7 0 159.155 0.2 0 15.915 0 Blood 

Pons 4 40 7.958 0.1 700 15.915 0.15 0.04 200000 106.103 0.22 45000000 5.305 0 Cerebellum 

Prostate 4 55 7.958 0.1 5000 159.155 0.1 0.4 100000 159.155 0.2 40000000 15.915 0 Testis 

Salivary Gland 4 55 7.958 0.1 2500 159.155 0.1 0.5 100000 159.155 0.2 40000000 15.915 0 Thyroid gland 

SAT (Subcutaneous Fat) 2.5 9 7.958 0.2 35 15.915 0.1 0.035 33000 159.155 0.05 10000000 15.915 0.01 Fat (Average Infiltrated) 

Seminal vesicle 4 55 7.958 0.1 5000 159.155 0.1 0.4 100000 159.155 0.2 40000000 15.915 0 Testis 

Skin 4 32 7.234 0 1100 32.481 0.2 0.0002 0 159.155 0.2 0 15.915 0.2 Skin (Dry) 

Skull 2.5 10 13.263 0.2 180 79.577 0.2 0.02 5000 159.155 0.2 100000 15.915 0 Bone (Cortical) 

Small Intestine 4 50 7.958 0.1 10000 159.155 0.1 0.5 500000 159.155 0.2 40000000 15.915 0 Small Intestine 

Small Intestine Lumen 4 50 7.234 0.1 7000 353.678 0.1 0.2 1200000 318.31 0.1 25000000 2.274 0 Muscles 

Spinal Cord 4 26 7.958 0.1 500 106.103 0.15 0.006 70000 15.915 0.2 40000000 15.915 0 Nerve 

Spleen 4 48 7.958 0.1 2500 63.662 0.15 0.03 200000 265.258 0.25 50000000 6.366 0 Spleen 

Stomach 4 60 7.958 0.1 2000 79.577 0.1 0.5 100000 159.155 0.2 40000000 15.915 0 Stomach 

Stomach Lumen 4 50 7.234 0.1 7000 353.678 0.1 0.2 1200000 318.31 0.1 25000000 2.274 0 Muscle 

Tendon\Ligament 4 42 12.243 0.1 60 6.366 0.1 0.25 60000 318.31 0.22 20000000 1.326 0 Tendon/Ligament 

Testis 4 55 7.958 0.1 5000 159.155 0.1 0.4 100000 159.155 0.2 40000000 15.915 0 Testis 

Thalamus 4 45 7.958 0.1 400 15.915 0.15 0.02 200000 106.103 0.22 45000000 5.305 0 Brain (Grey Matter) 

Thymus 4 55 7.958 0.1 2500 159.155 0.1 0.5 100000 159.155 0.2 40000000 15.915 0 Thyroid gland 

Thyroid Gland 4 55 7.958 0.1 2500 159.155 0.1 0.5 100000 159.155 0.2 40000000 15.915 0 Thyroid gland 

Tongue 4 50 7.958 0.1 4000 159.155 0.1 0.25 100000 159.155 0.2 40000000 15.915 0 Tongue 

Tooth 2.5 10 13.263 0.2 180 79.577 0.2 0.02 5000 159.155 0.2 100000 15.915 0 Bone (Cortical) 

Tooth (Dentine) 2.5 10 13.263 0.2 180 79.577 0.2 0.02 5000 159.155 0.2 100000 15.915 0 Bone (Cortical) 

Tooth (Enamel) 2.5 10 13.263 0.2 180 79.577 0.2 0.02 5000 159.155 0.2 100000 15.915 0 Bone (Cortical) 

Trachea 2.5 38 7.958 0.1 400 63.662 0.1 0.3 50000 15.915 0.2 1000000 15.915 0 Trachea 



www.manaraa.com

 133 
133 

Trachea Lumen 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Trachea Lumen 

Ureter\Urethra 4 40 8.842 0.1 50 3.183 0.1 0.25 100000 159.155 0.2 10000000 1.592 0 Aorta Wall 

Urinary Bladder 2.5 16 8.842 0.1 400 159.155 0.1 0.2 100000 159.155 0.2 10000000 15.915 0 Urinary Bladder 

Urinary Bladder Wall 2.5 16 8.842 0.1 400 159.155 0.1 0.2 100000 159.155 0.2 10000000 15.915 0 Urinary Bladder Wall 

Uterus 4 55 7.958 0.1 800 31.831 0.1 0.2 300000 159.155 0.2 35000000 1.061 0 Uterus 

Vagina 4 50 7.958 0.1 3000 159.155 0.2 0.01 100000 159.155 0.2 40000000 1.592 0 Large Intestine 

Vertebrae 2.5 10 13.263 0.2 180 79.577 0.2 0.02 5000 159.155 0.2 100000 15.915 0 Bone (Cortical)  
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